首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孟庆伟  谌东中 《化学通报》2005,68(9):667-673
从液晶基元连接方式、液晶分子拓扑结构以及凝聚态自组织方式等方面扼要介绍和评述了非传统型液晶分子设计与工程研究进展,并重点介绍了可望引起液晶显示技术革命的双轴向列相香蕉形液晶研究的突破性工作,展望了非传统型液晶分子设计和复杂自组织超分子液晶领域今后的发展方向。  相似文献   

2.
新型液晶聚合物的分子设计及功能   总被引:3,自引:0,他引:3  
介绍了新型液晶聚合物的分子设计方法;综述了利用分子间氢键,电荷转移相互作用和防子间相互作用设计得到的新型液晶聚合物复合体系的性质和功能,概述了液晶聚合物LB膜和液晶聚合物弹性体的分子排布特征和功能,这些研究开拓了液晶聚合物研究的新领域,为液晶聚合物分子排布的控制和功能性研究提供了新方法。  相似文献   

3.
基于C=O…HN的分子间氢键能够自组装形成具有精确分子排列和很好稳定性的有序结构,在设计构造液晶功能材料方面具有重要的不可替代的地位.分子形状是设计小分子热致液晶的一个主要考虑因素,它对液晶态的结构有至关重要的影响.以分子形状与液晶态相互关系为主线,重点介绍了目前文献报道的基于C=O…HN分子间氢键的盘状和楔形分子形成液晶的研究进展,以期为新型液晶材料的分子设计提供一些借鉴.  相似文献   

4.
含甲氧基偶氮苯液晶基元超分子的相行为研究   总被引:1,自引:0,他引:1  
氢键是分子聚集和识别过程中的重要相互作用,利用分子间氢键,可设计并制备各种超分子体系材料,1989年,Kato等报道了吡啶基和羧酸基通过分子间氢键相互作用形成扩展液晶基元,得到了液晶稳定性增强的超分子液晶复合体系及侧链超分子液晶聚合物;同时,Lehn等报道了带脲嘧啶基和2,6-二酰胺吡啶基两种互补官能团的分子通过三重氢键缔合形成的主链超分子液晶。从此,迅速而广泛的开展利用氢键组装的超分子液晶体系的研究,并已组装合成出低分子型、  相似文献   

5.
设计并合成了3个低温冠醚液晶-单臂脂环冠醚液晶,考察了冠醚结构与液晶性质的关系,单臂冠醚液晶分子具有液晶蛋白质应满足长径比大于3,分子具有一定的平面特性和能通过引入手性基团使单臂冠醚液晶分子产生手性近晶相等条件。  相似文献   

6.
对金属有权液晶的分子形状、合成和性能进行了评述,为提高金属有机铁电液晶分子的偶极矩和电光响应速度进行了新的探索和分子设计。  相似文献   

7.
对金属有机液晶的分子形状、合成和性能进行了评述,为提高金属有机铁电液晶分子的偶极矩和电光响应速度进行了新的探索和分子设计。  相似文献   

8.
动物结缔组织的发生、发育及病变与结构和形态密切相关,组织结构有序性在结缔组织发生过程中尤为明显,结缔组织的胶原液晶结构是胶原分子自组装得到胶原纤维或组织过程中的一个过渡态.本文以重建胶原为基础分子,讨论了三螺旋结构对胶原分子组装液晶的影响,并分析了胶原分子液晶和超分子液晶结构转变研究进展和形成的热、动力学条件.诱导胶原液晶形成是体外模拟细胞外基质构建的关键,为研究结缔组织形态发生机制及病变模型建立了联系,也为仿生构建组织工程支架提供有益信息.  相似文献   

9.
离子自组装超分子液晶是超分子体系中相对较新颖和引入注意的领域,它在新型功能材料的设计中占据非常重要的位置。本文主要介绍目前文献报道的由含铵离子的液晶分子或非液晶分子与含羧基的聚合物和含磺酸离子的聚合物自组装成超分子液晶及含金属离子(锌、铜、锂、氧钒基)的金属离子配位自组装超分子液晶两大类。  相似文献   

10.
王涛  周恩乐 《高分子通报》1998,(4):16-22,48
介绍了盘状液晶材料的相分类和不同聚集态结构的特点,并对盘状液晶体系的分子工程和其它扩展性研究进展了综述。  相似文献   

11.
合成了体系中含一个苯环、二个苯环的γ-取代-β二酮二羰基合铑棒状金属有机化合物, 并对其介晶性进行了表征。探讨了分子长宽比、刚性实和结构对液晶性质的影响。同时表明了向列相有机液晶分子的模型设计同样能很好地指导金属有机液晶分子的设计、合成及介晶性行为的研究。  相似文献   

12.
合成了体系中含一个苯环、二个苯环的γ-取代-β二酮二羰基合铑棒状金属有机化合物,并对其介晶性进行了表征.探讨了分子长宽比、刚性实和结构对液晶性质的影响.同时表明了向列相有机液晶分子的模型设计同样能很好地指导金属有机液晶分子的设计、合成及介晶性行为的研究.  相似文献   

13.
冠醚液晶出现至今仅十几年,由于其具有冠醚和液晶的各种性质而受到人们的关注[‘-‘1.我们在已有工作的基础上,设计合成了5种酸胺型冠醚液晶分子(4—8),其中3种分子(4-6)具有液晶性.合成路线如下:1结果与讨论合成样品4-8经IR、MS、‘HNMR和元素分析确证其结构.用DSC和Texture图测定了4-6的液晶性质,其结果见图1.化合物7、8无液晶性,分子长径比分别为5.8:I,满足一般律状向列液晶分子长径比的要求.当在其分子链中增加1个苯环(5、6)时,分子的刚性链比例增大,整个分子的刚性增加,则具有液晶性.双臂型冠醚液…  相似文献   

14.
超分子液晶结合了超分子化学和液晶两者的特点,是近年来研究的一个热点.在简述超分子化学和超分子液晶概念的基础上,对非共价键结合包括氢键型、离子型和金属络合型的超分子液晶结构和研究现状作了简介,并对超分子液晶常用的表征方法进行了概述.  相似文献   

15.
设计并合成了7种新型甲壳型液晶高分子,研究了液晶基元的化学结构和立体效应对单体及其聚合物液晶性的影响.发现在液晶基元的末端引入极性或可极化的原子基团提高了单体的熔点和液晶相的热稳定性;液晶基元的长径比越大,单体的熔点和清亮点越高;聚合使单体的液晶稳定性增加、液晶相温度范围变宽;侧链液晶基元的极性、刚性和空阻越大,聚合物的玻璃化温度越高;酰胺基团无论是在分子的末端还是在连接部位,都使单体的熔点和聚合物的玻璃化温度提高,但在分子末端时液晶相较稳定,作为中心桥键时不利于液晶相的稳定形成.  相似文献   

16.
碟形液晶的出现使得热致性液晶能够产生“柱状”液晶相的结构.该分子聚集的几何状态,可使液晶具有各向异性的物理性质。由此,许多功能性的液晶的设计,接踵而来ti.刀。对于.*通讯联系人化学通报1992年第,期热致性液晶来讲,分子的形状是决定形成特定液晶相结构的关键因素[3J。迄今,从分子的化学结构来确定其能  相似文献   

17.
胆甾相液晶结构色的光调控   总被引:1,自引:0,他引:1  
胆甾相液晶是一类具有周期性螺旋超结构的软光子晶体,能够选择性地反射不同波长的光产生结构色.在向列相液晶中掺杂光响应手性分子是制备光响应胆甾相液晶的普遍方法.在外界光源的刺激下,光响应手性分子的空间结构改变,诱导螺旋超结构的螺距发生变化,从而调控胆甾相液晶的结构色,因此光响应胆甾相液晶在滤光器、传感器、可调光学激光器和动态显示等领域具有广阔的应用前景.总结了不同光响应手性分子构筑的胆甾相液晶体系,分析了手性分子结构设计对胆甾相液晶结构色调控的影响,最终讨论了光响应胆甾相液晶目前面临的挑战以及未来的发展方向.  相似文献   

18.
甲壳型液晶聚合物(mesogen-jacketed liquid crystal polymer,MJLCP)是1987年由周其凤教授[1]首先提出的概念.从化学结构看,甲壳型液晶聚合物属于侧链型,由烯类单体经链式聚合制得,容易得到高分子量的产物,具有一般柔性侧链型液晶聚合物的一些优点.但是与柔性侧链型液晶聚合物不同的是,MJLCP分子中的刚性液晶基元是通过腰部或重心位置与主链相联结的,在主链与刚性液晶基元的侧基之间只有很短或者没有柔性间隔基.由于在这类液晶聚合物的分子主链周围空间内刚性液晶基元的密度很高,分子主链被由液晶基元形成的外壳所包裹并被迫采取相对伸直的刚性链构象.因此,这类液晶聚合物又和主链型刚性链液晶聚合物相似,具有较明显的链刚性.近年来,周其凤课题组围绕甲壳型液晶聚合物深入开展了分子设计与合成、分子结构与性能等多方面的研究.其中,设计合成具有特定功能的甲壳型液晶聚合物是在以往研究工作和学科交叉融合的基础上发展起来的一项新的研究工作.将一些有特殊功能的基团引入到甲壳型液晶聚合物中会使其具有崭新的特性.  相似文献   

19.
本文综述了液晶弹性体的分子设计方法,物理性质及可能的应用领域等液晶弹性体的最新研究结果。  相似文献   

20.
正19世纪80年代后期,奥地利植物学家Reinitzer和德国物理学家Lehmann共同发现了液晶,创立了液晶科学。20世纪70年代,液晶显示技术实现了革命性突破,风靡全球。液晶高分子的研究始于1937年的生物高分子液晶,随即受到广泛关注,尤其是杜邦公司基于溶致液晶芳香族聚酰胺的液晶纺丝技术在1972年推出的Kevlar系列高性能纤维产品,极大地推动了液晶高分子的飞速发展。近几十年来,基于热致液晶芳香族聚酯的高性能工程塑料如雨后春笋般不断涌现,高性能液晶高分子结构材料也成为全球研究热点。同时,侧链高分子液晶、聚合物分散液晶、聚合物稳定液晶、全息聚合物分散液晶以及新型结构的高分子液晶、超分子液晶在显示、传感、防伪、数据存储和电子封装等领域的应用也成为高性能液晶高分子功能材料的研究亮点。其中让我们倍感骄傲的是,我国科学家周其凤院士于1987年设计、合成了甲壳型液晶高分子,为液晶高分子科学与材料的发展做出了原创性贡献。当前,液晶材料的高分子化、高分子材料的液晶化已成为化学、材料、光学工程和信息工程等相关学科的重要研究方向,尤其近期在光存储、5G通讯领域中的应用备受关注。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号