首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ferroelectric compounds Pb2Na1−xLaxNb5−xFexO15 and Pb0.5(5−x)LaxNb5−xFexO15 (0≤x≤1) with the tungsten bronze type structure have been investigated using Raman spectroscopy. The evolution of the spectra as a function of composition at room temperature is reported. In the frequency range 200-1000 cm−1 three main A1 phonons around 240 (υ1), 630 (υ2) and 816 (υ3) cm−1 were observed. The broadening of the Raman lines for high values of x originates from a significant structural disorder. This is in good agreement with the relaxor character of these compositions. The lowest-frequency part of the spectra, below 180 cm−1, reveals a structural change in the studied solid solutions. The behaviour of the Raman shift of the υ1 mode confirms that in Pb2Na1−xLaxNb5−xFexO15, a clear anomaly occurs in the vicinity of x=0.4.  相似文献   

2.
Solid electrolytes based on lithium doped CaTiO3,LixCa1−xTiO3 (x=0-0.5) were prepared by the sol-gel method in an ethanol and water mixture medium. Phase identification and morphology observation of the products were carried out by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the LixCa1−xTiO3 powders sintered above 700 °C are of cubic perovskite structure and the mean size of LixCa1−xTiO3 powders is about 80 nm. A study of ionic conductivity by AC impedance implies that the conductivity of LixCa1−xTiO3 increases with the increase of substituted Li+ ions and reaches a maximum value of 4.53×10−4 S cm−1 at x=0.1, and then decreases for x>0.1.  相似文献   

3.
BiFeO3/Zn1−xMnxO (x = 0-0.08) bilayered thin films were deposited on the SrRuO3/Pt/TiO2/SiO2/Si(1 0 0) substrates by radio frequency sputtering. A highly (1 1 0) orientation was induced for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO thin films demonstrate diode-like and resistive hysteresis behavior. A remanent polarization in the range of 2Pr ∼ 121.0-130.6 μC/cm2 was measured for BiFeO3/Zn1−xMnxO. BiFeO3/Zn1−xMnxO (x = 0.04) bilayer exhibits a highest Ms value of 15.2 emu/cm3, owing to the presence of the magnetic Zn0.96Mn0.04O layer with an enhanced Ms value.  相似文献   

4.
The magnetic properties of the Ca1−xMnxO systems in the range 0?x?1 have been studied by mean field theory and high-temperature series expansions (HTSEs). By using the first theory, we have evaluated the nearest neighbour and the next-neighbour super-exchange interaction J1(x) and J2(x) respectively, in the range 0.45?x?1. The corresponding classical exchange energy for magnetic structure is obtained for the Ca1−xMnxO systems. The HTSEs combined with the Padé approximants (PA) method is applied to the Ca1−xMnxO systems; we have obtained the magnetic phase diagrams (TN or TSG versus dilution x) in the range 0?x?1. The obtained theoretical results are in agreement with experimental ones obtained by magnetic measurements. The critical exponents associated with the magnetic susceptibility (γ) and the correlation lengths (ν) are deduced in the range 0?x?1.  相似文献   

5.
Si1−xMnx diluted magnetic semiconductor (DMS) bulks were formed by using an implantation and annealing method. Energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), and double-crystal rocking X-ray diffraction (DCRXD) measurements showed that the grown materials were Si1−xMnx crystalline bulks. Hall effect measurements showed that annealed Si1−xMnx bulks were p-type semiconductors. The magnetization curve as a function of the magnetic field clearly showed that the ferromagnetism in the annealed Si1−xMnx bulks originated from the interaction between interstitial and substitutional Mn+ ions, which was confirmed by the DCRXD measurements. The magnetization curve as a function of the temperature showed that the ferromagnetic transition temperature was approximately 75 K. The present results can help to improve understanding of the formation mechanism of ferromagnetism in Si1−xMnx DMS bulks.  相似文献   

6.
Intense red phosphors, AgGd1−xEux(W1−yMoy)2O8 (x=0.0-1.0, y=0.0-1.0), have been synthesized through traditional solid-state reaction and characterized by X-ray diffraction (XRD) and photoluminescence (PL). XRD results reveal that AgGd1−xEuxW2O8 synthesized at 1000 °C has a tetragonal crystal structure, which is named as high temperature phase (HTP) AgGdW2O8. All phosphors compositions with Eu3+ show red and green emission on excitation either in the charge-transfer or Eu3+ levels. Analysis of the emission spectra with different Eu3+ concentrations reveal that the optimum dopant concentration for Eu3+ is x=0.6 in the HTP AgGd1−xEuxW2O8 (x=0.0-1.0). Studies on the AgGd0.4Eu0.6(W1−yMoy)2O8 (y=0.0-1.0) and AgGd1−xEux(W0.7Mo0.3)2O8 (x=0.0-1.0) show that the emission intensity is maximum for compositions with y=0.3 and x=0.5, respectively, and a decrease in emission intensity is observed for higher y or x values. The Mo6+ and Eu3+ co-doped AgGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped AgGd(WO4)2 in UV region. The intense emission of the tungstate/molybdate phosphors under 394 and 465 nm excitations, respectively, suggests that these materials are promising candidates as red-emitting phosphors for near-UV/blue GaN-based white LED for white light generation.  相似文献   

7.
Magnetic properties of amorphous Ge1−xMnx thin films were investigated. The thin films were grown at 373 K on (100) Si wafers by using a thermal evaporator. Growth rate was ∼35 nm/min and average film thickness was around 500 nm. The electrical resistivities of Ge1−xMnx thin films are 5.0×10−4∼100 Ω cm at room temperature and decrease with increasing Mn concentration. Low temperature magnetization characteristics and magnetic hysteresis loops measured at various temperatures show that the amorphous Ge1−xMnx thin films are ferromagnetic but the ferromagnetic magnetizations are changing gradually into paramagnetic as increasing temperature. Curie temperature and saturation magnetization vary with Mn concentration. Curie temperature of the deposited films is 80-160 K, and saturation magnetization is 35-100 emu/cc at 5 K. Hall effect measurement at room temperature shows the amorphous Ge1−xMnx thin films have p-type carrier and hole densities are in the range from 7×1017 to 2×1022 cm−3.  相似文献   

8.
The hydrogen content in a-Si1−xGex:H thin films is an important factor deciding the density and the optical band gap. We measured the elemental depth profiles of hydrogen together with Si and Ge by elastic recoil detection analysis (ERDA) combined with Rutherford backscattering (RBS) using MeV He2+ ions. In order to determine the hydrogen depth profiles precisely, the energy- and angle-dependent recoil cross-sections were measured in advance for the standard sample of a CH3+-implanted Si substrate. The cross-sections obtained here are reproduced well by a simple expression based on the partial wave analysis assuming a square well potential (width: r0 = 2.67 × 10−13 cm, depth: V0 = −36.9 MeV) within 1%. For the a-Si1−xGex:H films whose elemental compositions were determined by ERDA/RBS, we measured the secondary ions yields of HCs2+, SiCs2+, H, Si and Ge as a function of Ge concentration x. As a result, it is found that the useful yield ratios of HCs2+/SiCs2+, H/Si and Ge/Si are almost constant and thus the elemental depth profiles of the a-Si1−xGex:H films can be also determined by secondary ion mass spectrometry (SIMS) within 10% free from a matrix effect.  相似文献   

9.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

10.
Five-layered Si/SixGe1−x films on Si(1 0 0) substrate with single-layer thickness of 30 nm, 10 nm and 5 nm, respectively were prepared by RF helicon magnetron sputtering with dual targets of Si and Ge to investigate the feasibility of an industrial fabrication method on multi-stacked superlattice structure for thin-film thermoelectric applications. The fine periodic structure is confirmed in the samples except for the case of 5 nm in single-layer thickness. Fine crystalline SixGe1−x layer is obtained from 700 °C in substrate temperature, while higher than 700 °C is required for Si good layer. The composition ratio (x) in SixGe1−x is varied depending on the applied power to Si and Ge targets. Typical power ratio to obtain x = 0.83 was 7:3, Hall coefficient, p-type carrier concentration, sheet carrier concentration and mobility measured for the sample composed of five layers of Si (10 nm)/Si0.82Ge0.18 (10 nm) are 2.55 × 106 /°C, 2.56 × 1012 cm−3, 1.28 × 107 cm−2, and 15.8 cm−2/(V s), respectively.  相似文献   

11.
Phase relationships, thermal expansion and electrical properties of Mg1 − xFexO (x = 0.1-0.45) cubic solid solutions and Fe3 − x − yMgxCryO4 ± δ (x = 0.7-0.95; y = 0 or 0.5) spinels were studied at 300-1770 K in the oxygen partial pressure range from 10 Pa to 21 kPa. Increasing iron content enlarges the spinel phase stability domain at reduced oxygen pressures and elevated temperatures. The total conductivity of the spinel ceramics is predominantly n-type electronic and is essentially p(O2)-independent within the stability domain. The computer simulations using molecular dynamics technique confirmed that overall level of ion diffusion remains low even at high temperatures close to the melting point. Temperature dependencies of the total conductivity in air exhibit a complex behavior associated with changing the dominant defect-chemistry mechanism from prevailing formation of the interstitial cations above 1370-1470 K to the generation of cation vacancies at lower temperatures, and with kinetically frozen cation redistribution in spinel lattice below 700-800 K. The average thermal expansion coefficients of the spinel ceramics calculated from dilatometric data in air vary in the range (9.6-10.0) × 10− 6 K− 1 at 300-500 K and (13.2-16.1) × 10− 6 K− 1 at 1050-1370 K. Mg1 − xFexO solid solutions undergo partial decomposition on heating under oxidizing and mildly reducing conditions, resulting in the segregation of spinel phase and conductivity decrease.  相似文献   

12.
Ferromagnetic Ga1−xMnxAs epilayers with Mn mole fraction in the range of x≈2.2-4.4% were grown on semi-insulating (100) GaAs substrates using the molecular beam epitaxy technique. The transport properties of these epilayers were investigated through Hall effect measurements. The measured hole concentration of Ga1−xMnxAs layers varied from 4.4×1019 to 3.4×1019 cm−3 in the range of x≈2.2-4.4% at room temperature. From temperature dependent resisitivity data, the sample with x≈4.4% shows typical behavior for insulator Ga1−xMnxAs and the samples with x≈2.2 and 3.7% show typical behavior for metallic Ga1−xMnxAs. The Hall coefficient for the samples with x≈2.2 and 4.4% was fitted assuming a magnetic susceptibility given by Curie-Weiss law in a paramagnetic region. This model provides good fits to the measured data up to and the Curie temperature Tc was estimated to be 65, 83 K and hole concentration p was estimated to be 5.1×1019, 4.6×1019 cm−3 for the samples with x≈2.2 and 4.4%, respectively, confirming the existence of an anomalous Hall effect for metallic and insulating samples.  相似文献   

13.
The optical properties and the deep levels in bulk Si1−xMnx formed by using an implantation and annealing method were investigated. Transmission electron microscopy, X-ray diffraction, and Hall-effect measurements showed that the annealed bulk Si1−xMnx samples were p-type crystalline semiconductors. The photoluminescence spectra for the annealed bulk Si1−xMnx material showed luminescence peaks corresponding to excitons bound to neutral acceptors and related to dislocations due to the existence of Mn impurities. Deep-level transient spectroscopy results for the annealed bulk Si1−xMnx showed deep levels related to the interstitial and substitutial sites of the Mn+ ions. These results can help improve understanding of the optical properties and the deep levels in annealed bulk Si1−xMnx material.  相似文献   

14.
Lattice-mismatched ZnS1−xTex epilayers with various Te mole fractions on GaAs (100) substrates were grown by double well temperature gradient vapor deposition. X-ray diffraction patterns showed that the grown ZnS1−xTex layers were epitaxial films. The photoluminescence spectra showed that the peak position of the acceptor-bound exciton (A0, X) varied dramatically with changing the Te mole fraction and that the behavior of the (A0, X) peak position of the ZnS1−xTex epilayers with a small amount of the Te mole fraction was attributed to a bowing effect. The reflectivity and ellipsometry spectra showed that the absorption energy peak was significantly affected due to the Stoke's effect. These results provide important information on the structural and optical properties of ZnS1−xTex/GaAs heterostructures for improving optoelectronic device efficiencies operating in the spectral range between near ultraviolet and visible regions.  相似文献   

15.
The EPR and magnetic properties were investigated on vapour phase grown Zn1−xCrxTe (0.001?x?0.005) crystal samples at room temperature. The EPR spectra were observed for samples with x=0.001, 0.002 only. The simulations of the spectra confirm Cr3+ charge state of the dopant ion at tetrahedral symmetry. The magnetic behaviour of the samples with x=0.001 and 0.002 is neither that of Brillouin paramagnets nor Van Vleck systems while the samples with compositions x=0.003, 0.004 and 0.005 exhibited hysteresis behaviour.  相似文献   

16.
We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La0.7Sr0.3Mn1−xFexO3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (TC) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (−ΔSm) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg−1 K−1 at 343 K (x=0.05) to 1.3 J kg−1 K−1 at 105 K (x=0.2), under ΔH=5 T. The La0.7Sr0.3Mn0.93Fe0.07O3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg−1, and magnetic entropy of 4 J kg−1 K−1 which will be an interesting compound for application in room temperature refrigeration.  相似文献   

17.
The substituted nickel ferrite (NiFe2−2xSnxCuxO4, x=0, 0.1, 0.2, 0.3) was prepared by the conventional ceramic method. The effect of substitution of Fe3+ ions by Sn4+ and Cu2+ cations on the structural and magnetic properties of the ferrite was studied by means of 57Fe Mössbauer spectroscopy, alternating gradient force magnetometry (AGFM) and Faraday balance. Whereas undoped NiFe2O4 adopts a fully inverse spinel structure of the type (Fe)[NiFe]O4, Sn4+ and Cu2+ cations tend to occupy octahedral positions in the structure of the substituted ferrite. Based on the results of Mössbauer spectroscopic measurements, the crystal-chemical formula of the substituted ferrite may be written as (Fe)[NiFe1−2xSnxCux]O4, where parentheses and square brackets enclose cations in tetrahedral (A) and octahedral [B] coordination, respectively. The Néel temperature and the saturation magnetization values of the NiFe2−2xSnxCuxO4 samples were found to decrease with increasing degree of substitution (x). The variation of the saturation magnetization with x measured using the AGFM method and that calculated on the basis of the Mössbauer spectroscopic measurements are in qualitative agreement.  相似文献   

18.
This paper investigates the structure and surface characteristics, and electrical properties of the polycrystalline silicon-germanium (poly-Si1−xGex) alloy thin films, deposited by vertical reduced pressure CVD (RPCVD) in the temperature range between 500 and 750 °C and a total pressure of 5 or 10 Torr. The samples exhibited a very uniform good quality films formation, with smooth surface with rms roughness as low as 7 nm for all temperature range, Ge mole fraction up to 32% (at 600 °C), textures of 〈2 2 0〉 preferred orientation at lower temperatures and strong 〈1 1 1〉 at 750 °C, for both 5 and 10 Torr deposition pressures. The 31P+ and 11B+ doped poly-Si1−xGex films exhibited always lower electrical resistivity values in comparison to similar poly-Si films, regardless of the employed anneal temperature or implantat dose. The results indicated also that poly-Si1−xGex films require much lower temperature and ion implant dose than poly-Si to achieve the same film resistivity. These characteristics indicate a high quality of obtained poly-Si1−xGex films, suitable as a gate electrode material for submicron CMOS devices.  相似文献   

19.
Resonant photoemission study of electronic structure of molecular beam epitaxy grown Eu1−xGdxTe layers without and with cover protected layer of Te were performed using synchrotron radiation. The analysis of the valence band and shallow core levels spectra of the clean surface of Eu1−xGdxTe obtained in situ under UHV conditions showed the existence of Eu2+ and Eu3+ ions in the layers. The trivalent europium ions mostly are located at the surface and its amount strongly depends on sample surface preparation conditions. The prolonged annealing of Eu1−xGdxTe layers covered with protected layer of Te leads to formation of clean surface of the sample not changing the stoichiometry of it and without the accumulation of Eu3+ ions at the surface region.  相似文献   

20.
We have performed a first-principle Full Potential Linearized Augmented Plane Waves calculation within the local density approximation (LDA) to the zinc-blende AlxGa1−xAs1−yNy to predict its optical properties as a function of N and Al mole fractions. The accurate calculations of electronic properties such as band structures and optical properties like refractive index, reflectivity and absorption coefficient of AlxGa1−xAs and AlxGa1−xAs1−yNy with x≤0.375 and y up to 4% are presented. AlxGa1−xAs on GaAs have a lattice mismatch less than 0.16% and the lattice constant of AlxGa1−xAs has a derivation parameter of 0.0113±0.0024. The band gap energies are calculated by LDA and the band anticrossing model using a matrix element of CMN=2.32 and a N level of EN=(1.625+0.069x) eV. The results show that AlxGa1−xAs can be very useful as a barrier layer in separate confinement heterostructure lasers and indicate that the best choice of x and y AlxGa1−xAs1−yNy could be an alternative to AlxGa1−xAs when utilized as active layers in quantum well lasers and high-efficiency solar cell structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号