共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Kessler K. Müller T. Geruschke H. Timmers A. P. Byrne R. Vianden 《Hyperfine Interactions》2010,197(1-3):155-158
GaN and ZnO are possible candidates for dilute magnetic semiconductors with Curie temperatures above room temperature. Doping with transition metals like Co, Mn or Fe could be a simple way to create such systems. The perturbed angular correlation (PAC) probe 100Pd/100Rh is isoelectronic to cobalt and therefore a perfect tool to investigate the incorporation of transition metals into these compounds as well as the influence of other impurities on internal magnetic fields. The (0001) and (10 $\bar{1}$ 10) surfaces of ZnO single crystals, freestanding GaN films, and GaN thin films (6 μm) on sapphire substrates were recoil-implanted with the 100Pd/100Rh probe. The probe was produced using the fusion evaporation reaction 92Zr(12C, 4n)100Pd at a beam energy of 69 MeV. Subsequently, the incorporation of the probe was studied by PAC spectroscopy during an isochronal annealing program. First results without and with an applied external magnetic field are indicative of a strongly disturbed lattice vicinity of Pd impurities in both hosts. No signs of spontaneous ferromagnetic ordering were observed. 相似文献
2.
Semiconducting materials are employed in the fabrication of a number of semiconductor devices and opto-electronic detectors
etc depending on their properties, state of purity and perfection and energy band gap values. In the present study, a latest
and novel photoacoustic spectroscopic technique has been employed for the determination of energy band gap of some semiconductors
namely CdS, CdSe, CdTe, ZnS, ZnO, Se and Si in the powder form. Values obtained have been compared with those reported by
conventional methods. 相似文献
3.
4.
F. Roccaforte F. Giannazzo F. Iucolano J. Eriksson M.H. Weng V. Raineri 《Applied Surface Science》2010,256(19):5727-5735
Wide band gap (WGB) materials are the most promising semiconductors for future electronic devices, and are candidates to replace the conventional materials (Si, GaAs, …) that are approaching their physical limits. Among WBG materials, silicon carbide (SiC) and gallium nitride (GaN) have achieved the largest advancements with respect to their material quality and device processing. Clearly, the devices performances depend on several surface and interface properties, which in turn are often crucially determined by the quality of the available material, as well as by the device processing maturity. In this paper, some surface and interface issues related to SiC and GaN devices processing are reviewed. First, the control of metal/SiC barrier uniformity and surface preparation will be discussed with respect to the performance of Schottky-based devices. Moreover, the impact of high-temperature annealing required for high-voltage Schottky diodes and MOSFETs fabrication, on the surface morphology and device performances will also be briefly presented. In the second part, it will be shown that for GaN the material quality is still the main concern, since dislocations have a severe influence on the current transport and barrier homogeneity of metal/GaN interfaces. Other practical implications of thermal annealing and surface passivation during GaN-based devices fabrication will also be addressed. 相似文献
5.
Roucka R Tolle J Chizmeshya AV Crozier PA Poweleit CD Smith DJ Tsong IS Kouvetakis J 《Physical review letters》2002,88(20):206102
Two compounds SiC and AlN, normally insoluble in each other below approximately 2000 degrees C, are synthesized as a single-phase solid-solution thin film by molecular beam epitaxy at 750 degrees C. The growth of epitaxial SiCAlN films with hexagonal structure takes place on 6H-SiC(0001) substrates. Two structural models for the hexagonal SiCAlN films are constructed based on first-principles total-energy density functional theory calculations, each showing agreement with the experimental microstructures observed in cross-sectional transmission electron microscopy images. The predicted fundamental band gap is 3.2 eV for the stoichiometric SiCAlN film. 相似文献
6.
The structural and electronic properties of individual titanium oxide nanotubes have been studied using both empirical and ab initio calculations. Two different types of titanium oxide nanotubes (A-nanotube and B-nanotube) have been constructed and energy-minimized by molecular mechanics calculations. We found that the A-nanotubes are energetically more favorable than the B-nanotubes. The electronic band structure of the titanium oxide nanotubes was also calculated with respect to the tubule diameter and the tubule type using the ab initio method. The band gap of the A-nanotube was reduced by up to 60% as the tubule diameter decreases from 1.2 nm to 0.5 nm. 相似文献
7.
Using first-principles calculations, a novel B12-based ternary compound, NaB6Si structure is proposed in this work. This structure is confirmed to be dynamically, thermodynamically, and mechanically stable at ambient pressure. The formation energy of NaB6Si is lower than that of experimentally synthesized Na8B74.5Si17.5. The Vickers hardness is calculated to be 30.2 GPa, indicating NaB6Si is a promising hard material. The band structure and density of states reveal that NaB6Si is a wide band gap semiconductor with a band gap approximately 2.88 eV. This study provides a fundamental understanding of the structural, mechanical, and electronic properties in NaB6Si. 相似文献
8.
9.
The band structures of 32 of the most important semiconductor crystals are calculated using an efficient, minimal basis, orthogonalized LCAO method. These include the diamond structure of C, Si, Ge, α-Sn; the zinc blende structure of β-SiC, BN, BP, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, β-ZnS, ZnSe, ZnTe, CdS, CdTe; the wurtzite structure of AlN, GaN, ZnO, α-ZnS, CdS, CdSe; the sodium chloride structure of CdO, GeTe, SnTe and trigonal Se and Te. The calculations, which involve diagonalizations of small size matrix equations yield results having the following characteristics: (1) satisfactory valence bands and lower conduction bands and bulk densities of states; (2) the gap sizes and the locations of valence band maximum and conduction band minimum in agreement with experiment; (3) reasonable values of fractional ionicity and electron and hole effective masses. These are achieved by fine-tuning the exchange parameters in the construction of the potentials. Application of this approach to the study of the electronic structures of disordered and other complex semiconductor systems is also discussed. 相似文献
10.
Nanoindentation studies are carried out on epitaxial ZnO and GaN thin films on (0 0 0 1) sapphire and silicon substrates, respectively. A single discontinuity (‘pop-in’) in the load-indentation depth curve is observed for ZnO and GaN films at a specific depths of 13-16 and 23-26 nm, respectively. The physical mechanism responsible for the ‘pop-in’ event in these epitaxial films may be due to the interaction behavior of the indenter tip with the pre-existing threading dislocations present in the films during mechanical deformation. It is observed that the ‘pop-in’ depth is dependent on lattice mismatch of the epitaxial thin film with the substrate, the higher the lattice mismatch the shallower the critical ‘pop-in’ depth. 相似文献
11.
<正>Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200℃for 30 min.XRD measurement result indicates an increase in the lattice parameter of the GaN nanoparticles annealed at 1200℃,and HRTEM image shows that the increase cannot be ascribed to other ions in the interstitial positions.If the as-synthesised GaN nanoparticles at 950℃are regarded as standard,the thermal expansion changes nonlinearly with temperature and is anisotropic;the expansion below 1000℃is smaller than that above 1000℃.This study provides an experimental demonstration for selecting the proper annealing temperature of GaN.In addition,a large blueshift in optical bandgap of the annealed GaN nanoparticles at 1200℃is observed,which can be ascribed to the dominant transitions from the C(Γ7) with the peak energy at 3.532 eV. 相似文献
12.
Black-coloured GaN nanoparticles with an average grain size of 50 nm have been obtained by annealing GaN nanoparticles under flowing nitrogen at 1200 oC for 30 min. XRD measurement result indicates an increase in the lattice parameter of the GaN nanoparticles annealed at 1200 oC, and HRTEM image shows that the increase cannot be ascribed to other ions in the interstitial positions. If the as-synthesised GaN nanoparticles at 950 oC are regarded as standard, the thermal expansion changes nonlinearly with temperature and is anisotropic; the expansion below 1000oC is smaller than that above 1000 oC. This study provides an experimental demonstration for selecting the proper annealing temperature of GaN. In addition, a large blueshift in optical bandgap of the annealed GaN nanoparticles at 1200 oC is observed, which can be ascribed to the dominant transitions from the C(Γ7) with the peak energy at 3.532 eV. 相似文献
13.
Mohseni Meybodi S Hosseini SA Rezaee M Sadrnezhaad SK Mohammadyani D 《Ultrasonics sonochemistry》2012,19(4):841-845
A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide band-gap structure. 相似文献
14.
Optical band gap of Zn3N2 films 总被引:1,自引:0,他引:1
15.
Mechanism of phase conjugation via stimulated Brillouin scattering in narrow band gap semiconductors
We develop a theoretical model to study optical phase conjugation via stimulated Brillouin scattering (OPC-SBS) in narrow band gap transversely magnetized semiconductors. Threshold value of pump electric field and reflectivity of the image radiation for the onset of OPC-SBS are estimated. The analysis is applied to both cases viz. centrosymmetric (CS) and non-centrosymmetric (NCS) crystals. Numerical estimates made for n-type InSb crystal at liquid nitrogen temperature duly irradiated by nanosecond pulsed 10.6 μm CO2 laser shows that high OPC-SBS reflectivity (90%) can be achieved in NCS crystals at moderate pump electric fields if the crystal is used as an optical waveguide with relatively large interaction length (L = 5 mm) which proves its potential in practical applications such as fabrication of phase conjugate mirrors. 相似文献
16.
P. Tognini L. C. Andreani M. Geddo A. Stella P. Cheyssac R. Kofman 《Il Nuovo Cimento D》1996,18(7):865-872
Summary We report absorption measurements on Ge nanoparticles in the range 0.6–6 eV. By reducing the dot average radius to about 13
?, one observes a relevant blue-shift of theE
1+Δ
1 andE
2 peaks and a change of the oscillator strength of the two main structures. Simulations using effective-medium theories have
been carried out and the embedding matrix contribution to the measured properties has been evaluated. The different behaviour
of the absorption peaksE
1,E
1+Δ
1 andE
2 under quantum confinement has been related to their specific nature within the whole Brillouin zone.
The authors of this paper have agreed to not receive the proofs for correction. 相似文献
17.
D.J. Newman 《Journal of Physics and Chemistry of Solids》1974,35(9):1187-1199
Tabulated results and formulae are given for the parametrization of electronic band structures in simple cubic, body-centered cubic and face-centred cubic systems. This technique is based on the decoupling transformation and does not involve least squares fitting.A band labelling scheme is introduced which allows the decoupling transformation to be used to define the energy matrix of Wannier states in copper. This approach is used to re-examine the significance of the tight binding approximation for the d-states and to relate Fermi surface parameters directly to calculated band energies. 相似文献
18.
Guohua Zhong Kang Zhang Fan HeXuhang Ma Lanlan LuZhuang Liu Chunlei Yang 《Physica B: Condensed Matter》2012,407(18):3818-3827
Because of their possible applications in spintronic and optoelectronic devices, GaN dilute magnetic semiconductors (DMSs) doped by rare-earth (RE) elements have attracted much attention since the high Curie temperature was obtained in RE-doped GaN DMSs and a colossal magnetic moment was observed in the Gd-doped GaN thin film. We have systemically studied the GaN DMSs doped by RE elements (La, Ce–Yb) using the full-potential linearized augmented plane wave method within the framework of density functional theory and adding the considerations of the electronic correlation and the spin-orbital coupling effects. We have studied the electronic structures of DMSs, especially for the contribution from f electrons. The origin of magnetism, magnetic interaction and the possible mechanism of the colossal magnetic moment were explored. We found that, for materials containing f electrons, electronic correlation was usually strong and the spin–orbital coupling was sometimes crucial in determining the magnetic ground state. It was found that GaN doped by La was non-magnetic. GaN doped by Ce, Nd, Pm, Eu, Gd, Tb and Tm are stabilized at antiferromagnetic phase, while GaN doped by other RE elements show strong ferromagnetism which is suitable materials for spintronic devices. Moreover, we have identified that the observed large enhancement of magnetic moment in GaN is mainly caused by Ga vacancies (3.0μB per Ga vacancy), instead of the spin polarization by magnetic ions or originating from N vacancies. Various defects, such as substitutional Mg for Ga, O for N under the RE doping were found to bring a reduction of ferromagnetism. In addition, intermediate bands were observed in some systems of GaN:RE and GaN with intrinsic defects, which possibly opens the potential application of RE-doped semiconductors in the third generation high efficiency photovoltaic devices. 相似文献
19.
20.