首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
金晶  唐翌 《中国物理快报》2007,24(9):2501-2504
The diffusion Monte Carlo method is applied to study the ground-state properties of charged bosons in one dimension confined in a harmonic double-well trap. The particles interact repulsively through a Coulombic 1/r potential. Numerical results show that the well separation has significant influence on the ground-state properties of the system. When the interaction of the system is weak, ground-state energy decreases with the increasing well separation and has a minimal value. If the well separation increases continually~ the ground-state energy increases and approaches to a constant gradually. This effect will be abatable in the strong interacting system. In addition, by calculating the density of the systems for different interaction strengths with various well separations, we find that the density increases abnormally when the well separation is large at the centre of the system.  相似文献   

2.
We have studied the atomic density of a cloud confined in an isotropic harmonic trap at the vicinity of the Bose-Einstein transition temperature. We show that, for a non-interacting gas and near this temperature, the ground-state density has the same order of magnitude as the excited states density at the centre of the trap. This holds in a range of temperatures where the ground-state population is negligible compared to the total atom number. We compare the exact calculations, available in a harmonic trap, to semi-classical approximations. We show that these latter should include the ground-state contribution to be accurate.  相似文献   

3.
We investigate a two-dimensional (2D) Bose system with the long range interactions in the presence of disorder. Formation of the bound states at strong impurity sites gives rise to a depletion of the superfluid density. We predict the intermediate superfluid state where the condensate and localized bosons are present simultaneously. We find that interactions suppress localization and that with the increase of the boson density the system experiences a sharp delocalization crossover into a state where all bosons are delocalized. We map our results onto a 3D system of vortices in type II superconductors in the presence of columnar defects; the intermediate superfluid state maps to an intermediate vortex liquid where vortex liquid neighbors pinned vortices. We predict the depinning crossover within the vortex liquid and depinning induced vortex lattice-Bose glass melting.  相似文献   

4.
We investigate the crossover from three to two dimensions for harmonically trapped hard-sphere Bose gases by varying the aspect ratio of the trapping potential. The diffusion Monte Carlo method is used to calculate both the ground-state energy and structural properties. The effect of trap anisotropy, interparticle interaction, and number of particles on the ground-state properties is discussed. Our results show that the minimum value of the aspect ratio at which the system reaches an asymptotic equilibrium distribution in the weakly confined direction decreases with increasing scattering length, while the minimum value of the aspect ratio at which the system enters the quasi-two-dimensional (2D) regime increases as both the scattering length and the number of particles increase. Additionally, the role played by particle correlations is proved to be more pronounced in the quasi-2D system than in the three-dimensional (3D) system by directly comparing the ground-state properties for the two cases.  相似文献   

5.
We study systems of a few charged bosons contained within a strongly anisotropic harmonic trap. A detailed examination of the ground-state correlation properties of two-, three-, and four-particle systems is carried out within the framework of the single-mode approximation of the transverse components. The linear correlation entropy of the quasi-1D systems is discussed in dependence on the confinement anisotropy and compared with a strictly 1D limit. Only at weak interaction the correlation properties depend strongly on the anisotropy parameter.  相似文献   

6.
Dimensionality serves as an indispensable ingredient in any attempt to formulate low-dimensional physics, and studying the dimensional crossover at a fundamental level is challenging. The purpose of this work is to study the hierarchical dimensional crossovers, namely the crossover from three dimensions (3D) to quasi-2D and then to 1D. Our system consists of a 3D Bose–Einstein condensate trapped in an anisotropic 2D optical lattice characterized by the lattice depths V1 along the x direction and V2 along the y direction, respectively, where the hierarchical dimensional crossover is controlled via V1 and V2. We analytically derive the ground-state energy, quantum depletion and the superfluid density of the system. Our results demonstrate the 3D-quasi-2D-1D dimensional crossovers in the behavior of quantum fluctuations. Conditions for possible experimental realization of our scenario are also discussed.  相似文献   

7.
Motivated by the recent experiments realized in a flat-bottomed optical trap [Science 347(2015) 167;Nat. Commun. 6(2015) 6162], we study the ground state of polar-core spin vortex of quasi-2D spin-2 condensate in a homogeneous trap plus a weak magnetic field. The exact spatial distribution of local spin is obtained and the vortex core are observed to decrease with the growth of the effective spin-spin interaction. For the larger effective spin-spin interaction, the spatial distribution of spin magnitude in spin-2 condensate we obtained agrees well with that of spin-1 condensate in a homogeneous trap, where a polar-core spin vortex was schematically demonstrated as a fully-magnetized planar spin texture with a zero-spin core. The effective spin-spin interaction is proportional to both the bare spin-spin interaction and the radius of the homogeneous trap, simultaneously. Thus the polar-core spin vortex we obtained can be easily controlled by the radius of the trap.  相似文献   

8.
We adopt the potential harmonics expansion method for anab initio solution of the many-body system in a Bose condensate containing interacting bosons. Unlike commonly adopted mean-field theories, our method is capable of handling two-body correlation properly. We disregard three- and higher-body correlations. This simplification is ideally suited to dilute Bose Einstein condensates, whose number density is required to be so small that the interparticle separation is much larger than the range of two-body interaction to avoid three- and higher-body collisions, leading to the formation of molecules and consequent instability of the condensate. In our method we can incorporate realistic finite range interactions. We calculate energies of low-lying states of a condensate containing23Na atoms and some thermodynamical properties of the condensate.  相似文献   

9.
The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.  相似文献   

10.
Dimensionality is a central concept in developing the theory of low-dimensional physics.However,previous research on dimensional crossover in the context of a Bose-Einstein condensate(BEC) has focused on the single-component BEC.To our best knowledge,further consideration of the two-component internal degrees of freedom on the effects of dimensional crossover is still lacking.In this work,we are motivated to investigate the dimensional crossover in a three-dimensional(3D) Rabi-coupled two-compon...  相似文献   

11.
This paper extends a previous one which was applicable only to short range interactions. We study the relativistic field theory of a charged spin-zero boson field in the presence of the Coulomb field of a prescribed (nuclear) charge distribution. It is shown that for a sufficiently intense field the ground state is unstable against the formation of a Bose-Einstein condensate of negatively charged bosons, positively charged bosons escaping the system. When the effects of weak interaction are included, the instability occurs in a weaker field and positrons are emitted. A consistent quantum theory is formulated after the Coulomb interaction of the bosons is included. Properties of the condensate are examined in the limit of large condensate density, in a mean field approximation, which is also studied numerically. Possible implications concerning the existence of abnormally bound nuclei are presented.  相似文献   

12.
T. Otsuka 《Nuclear Physics A》1981,368(2):244-284
Rotational states are investigated in terms of the interacting boson model. A ground-state rotational band is built from a shell-model many-nucleon system. It is shown that the S and D collective nucleon pairs play dominant roles in low-spin states of the band and that this S-D dominance is broken in high-spin states. The intrinsic hamiltonian is constructed from the effective nucleon-nucleon interaction used in the shell model calculation and the intrinsic state of the rotational band is shown to be comprised primarily of S and D pairs. We introduce a λ boson which is a linear combination of s, d and higher angular momentum bosons, and the boson intrinsic state is given by the λ boson condensate state. The s and d bosons constitute approximately 90 % of the λ boson, and the boson intrinsic state reproduces very well the energy and the intrinsic quadrupole moment of the nucleon intrinsic state. The s-d boson hamiltonian is constructed from the S and D pairs, while effects of non S-D pairs are also included by renormalization of the boson hamiltonian. The renormalization is made by using the λ boson. The s-d boson quadrupole operator is derived similarly. The boson hamiltonian and quadrupole operator thus derived reproduce well the exactly calculated values for low-spin states of the rotational band, although the accuracy decreases in high-spin states. It is shown that the IBM possesses the same physical picture of the rotational states as the Nilsson scheme with pairing correlations. It is therefore concluded that the IBM is capable of describing low-lying rotational states.  相似文献   

13.
We study ground-state properties of interacting two-component boson gases in a one-dimensional harmonic trap by using the exact numerical diagonalization method. Based on numerical solutions of many-body Hamiltonians, we calculate the ground-state density distributions in the whole interaction regime for different atomic number ratio, intra- and inter-atomic interactions. For the case with equal intra- and inter-atomic interactions, our results clearly display the evolution of density distributions from a Bose condensate distribution to a Fermi-like distribution with the increase of the repulsive interaction. Particularly, we compare our result in the strong interaction regime to the exact result in the infinitely repulsive limit which can be obtained by a generalized Bose-Fermi mapping. We also discuss the general case with different intra- and inter-atomic interactions and show the rich configurations of the density profiles.  相似文献   

14.
We calculate the energy and condensate fraction for a dense system of bosons interacting through an attractive short range interaction with positive s-wave scattering length a. At high densities n>a(-3), the energy per particle, chemical potential, and square of the sound speed are independent of the scattering length and proportional to n(2/3), as in Fermi systems. The condensate is quenched at densities na(3) approximately 1.  相似文献   

15.
For small scattering lengths, cold bosonic atoms form a condensate the density profile of which is smooth. With increasing scattering length, the density gradually acquires more and more oscillations. Finally, the number of oscillations equals the number of bosons and the system becomes fermionized. On this pathway from condensation to fermionization intriguing phenomena occur, depending on the shape of the trap. These include macroscopic fragmentation and coexistence of condensed and fermionized parts that are separated in space.  相似文献   

16.
We apply the time-dependent variational principle of Balian-Vénéroni to a system of self-interacting trapped bosons at finite temperature. The method leads to a set of coupled non-linear time dependent equations for the condensate density, the thermal cloud and the anomalous density. We solve numerically these equations in the static case for a harmonic trap. We analyze the various densities as functions of the radial distance and the temperature. We find an overall good qualitative agreement with recent experiments as well as with the results of many theoretical groups. We also discuss the behavior of the anomalous density at low temperatures owing to its importance to account for many-body effects.  相似文献   

17.
Long-lived coherent spin precession of (3)He-B at low temperatures around 0.2T(c) is a manifestation of Bose-Einstein condensation of spin-wave excitations or magnons in a magnetic trap which is formed by the order-parameter texture and can be manipulated experimentally. When the number of magnons increases, the orbital texture reorients under the influence of the spin-orbit interaction and the profile of the trap gradually changes from harmonic to a square well, with walls almost impenetrable to magnons. This is the first experimental example of Bose condensation in a box. By selective rf pumping the trap can be populated with a ground-state condensate or one at any of the excited energy levels. In the latter case the ground state is simultaneously populated by relaxation from the exited level, forming a system of two coexisting condensates.  相似文献   

18.
Strongly interacting bosons in a two-dimensional rotating square lattice are investigated via a modified Bose-Hubbard Hamiltonian. Such a system corresponds to a rotating lattice potential imprinted on a trapped Bose-Einstein condensate. Second-order quantum phase transitions between states of different symmetries are observed at discrete rotation rates. For the square lattice we study, there are four possible ground-state symmetries.  相似文献   

19.
We study the stability of attractive atomic Bose-Einstein condensate and the macroscopic quantum many-body tunneling (MQT) in the anharmonic trap. We utilize correlated two-body basis function which keeps all possible two-body correlations. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ the many-body equation is solved adiabatically. The use of the van der Waals interaction gives realistic picture which substantially differs from the mean-field results. For weak anharmonicity, we observe that the attractive condensate gains stability with larger number of bosons compared to that in the pure harmonic trap. The transition from resonances to bound states with weak anharmonicity also differs significantly from the earlier study of [N. Moiseyev, L.D. Carr, B.A. Malomed, Y.B. Band, J. Phys. B 37, L193 (2004)]. We also study the tunneling of the metastable condensate very close to the critical number N cr of collapse and observe that near collapse the MQT is the dominant decay mechanism compared to the two-body and three-body loss rate. We also observe the power law behavior in MQT near the critical point. The results for pure harmonic trap are in agreement with mean-field results. However, we fail to retrieve the power law behavior in anharmonic trap although MQT is still the dominant decay mechanism.  相似文献   

20.
We have studied the Bose-Einstein condensation (BEC) of an interacting Bose gas confined in a two-dimensional (2D) quartic potential by using a mean-field, semiclassical two-fluid model. A thermodynamic analysis including the chemical potential, condensate fraction, total energy, and specific heat has been carried out by considering different values of the interaction strength. Finally, we have found that the behaviour of the condensate fraction and specific heat of quartically trapped bosons differs from those of bosons trapped in a harmonic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号