首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The mononuclear Ru(III) complex, [Ru(bpy)(tppz)Cl][PF6]2.acetylacetone, where tppz is 2,3,5,6-tetrakis(2-pyridyl)pyrazine and bpy is 2,2′-bipyridine, has been prepared and characterized by physicochemical and spectroscopic methods, cyclic voltammetry, and single crystal X-ray structure analysis. The coordination around the Ru(III) center is distorted octahedral, with bite angles of 80.70–161.83° for the chelating bpy and tppz ligands. The two pyridyl rings of the bpy ligand are nearly coplanar. UV–vis spectroelectrochemical studies of this complex in acetonitrile showed a reversible redox behavior evaluated by the maintenance of isosbestic points in the UV–vis spectrum for both forward reduction and reverse oxidation processes. Magnetic susceptibility data derived from paramagnetic NMR data revealed an effective magnetic moment of 1.79 BM at room temperature.  相似文献   

2.
We wish to report the synthesis and characterization of Group 9 metal complexes with the novel P,P′-diphenyl-1,4-diphospha-cyclohexane (dpdpc) ligand. The complexes are readily prepared by direct ligand substitution reactions from the dichloro-bridged binuclear complexes, [{η5-Cp*M(Cl)2}2]. The complexes include: [η5-Cp*Rh(Cl)2]2(μ-dpdpc) (1), [η5-Cp*Ir(Cl)2]2(μ-dpdpc) (2), and [η5-Cp*Rh(Cl)(dpdpc)]PF6 (3). The structures for all three complexes are supported by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy as well as elemental analysis. The molecular structures of 1 and 3 have also been established by single-crystal X-ray analysis.  相似文献   

3.
By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A] = [OTf] = [O3SCF3], [PF6]), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}441:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.  相似文献   

4.
Neutral trinuclear metallomacrocycles, [Cp*RhCl(μ-4-PyS)]3 (3) and [Cp*IrCl(μ-4-PyS)]3 (4) [Cp* = pentamethylcyclopentadienyl, 4-PyS = 4-pyridinethiolate], have been synthesized by self-assembly reactions of [Cp*RhCl2]2 (1) and [Cp*IrCl2]2 (2) with lithium 4-pyridinethiolate, respectively. In situ reaction of complex 3 with three equivalent of lithium 4-pyridinethiolate resulted in [Cp*Rh(μ-4-PyS)(4-PyS)]3 (5) containing both skeleton and pendent 4-PyS groups. Chelating coordination of 2-pyridinethiolate broke down the triangular skeleton to give mononuclear metalloligands Cp*Rh(2-PyS)(4-PyS) (6) and Cp*Ir(2-PyS)(4-PyS) (7) [2-PyS = 2-pyridinethiolate], which could also be synthesized from Cp*RhCl(2-PyS) (10) and Cp*IrCl(2-PyS) (11) with lithium 4-pyridinethiolate. The coordination reactions of 6 with complexes 1 and 2 gave dinuclear complexes [Cp*Rh(2-PyS)(μ-4-PyS)][Cp*RhCl2] (8) and [Cp*Rh(2-PyS)(μ-4-PyS)][Cp*IrCl2] (9), respectively. Molecular structures of 3, 4, 6 and 11 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

5.
Monometallic and bimetallic diimine complexes of rhenium(I) and osmium(II), [(CO)3(bpy)Re(4,4′-bpy)](PF6) I, [(CO)3(bpy)Re(4,4′-bpy)Re(bpy)(CO)3](PF6)2II, [Cl(bpy)2Os(4,4′-bpy)](PF6) III and [Cl(bpy)2Os(4,4′-bpy)Os(bpy)2Cl](PF6)2IV, and a new heterobimetallic complex of rhenium(I) and osmium(II) [(CO)3(bpy)Re(4,4′-bpy)Os(bpy)Cl](PF6)2V (bpy = 2,2′-bipyridine; 4,4′-bpy = 4,4′-bipyridine) have been synthesized and characterized by various spectral techniques. The photophysical properties of all the complexes have been studied and a comparison is made between the heterobimetallic and corresponding monometallic and homobimetallic complexes. Emission and transient absorption spectral studies reveal that excited state energy transfer from the rhenium(I) chromophore (∗Re) to osmium(II) takes place. The energy transfer rate constant is found to be 8.7 × 107 s−1.  相似文献   

6.
Reaction of [(η-C7H7)Mo(CO)3][PF6] and [(η-C5H5)Fe(CO)2CH3CN][PF6] with ditertiary phosphine ligands afforded products of three types; the monosubstituted complexes [(Ring)M(CO)2Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1; Ring = η-C5H5, M = Fe, N = 1 and 2), the chelated complexes [(Ring)M(CO)Ph2P(CH2)nPPh2][PF6] (Ring = η-C7H7, M = Mo, N = 1 and 2; Ring = η-C5H5, M = Fe, N = 1 and 2), and the dinuclear complex [{(η-C7H7)Mo(CO)2}2 -μ- Ph2PCH2CH2PPh2][(PF6)2]. Spectroscopic properties, including 31P NMR, are reported.  相似文献   

7.
The novel cyclometalated Rh(III) complex, [Rh(phpy-κ2N,C2)2(phen-dione)]PF6, where phpy-κ2N,C2 is pyridine-2-yl-2-phenyl and phen-dione is 1,10-phenanthroline-5,6-dione has been prepared and characterized by elemental analysis, IR, 1H NMR, and electronic absorption spectroscopies, cyclic voltammetry, and X-ray crystallography. The crystal structure of [Rh(phpy-κ2N,C2)2(phen-dione)]PF6·CH3CN shows that the coordination geometry around the Rh(III) is a distorted octahedron, with bite angles of 76.13°-81.09° for all three bidentate ligands.  相似文献   

8.
Two stereoisomers of cis-[Ru(bpy)(pynp)(CO)Cl]PF6 (bpy = 2,2′-bipyridine, pynp = 2-(2-pyridyl)-1,8-naphthyridine) were selectively prepared. The pyridyl rings of the pynp ligand in [Ru(bpy)(pynp)(CO)Cl]+ are situated trans and cis, respectively, to the CO ligand. The corresponding CH3CN complex ([Ru(bpy)(pynp)(CO)(CH3CN)]2+) was also prepared by replacement reactions of the chlorido ligand in CH3CN. Using these complexes, ligand-centered redox behavior was studied by electrochemical and spectroelectrochemical techniques. The molecular structures of pynp-containing complexes (two stereoisomers of [Ru(bpy)(pynp)(CO)Cl]PF6 and [Ru(pynp)2(CO)Cl]PF6) were determined by X-ray structure analyses.  相似文献   

9.
Oxido bridges commonly form between iron(III) ions, but their bond angles and symmetry vary with the circumstances. A large number of oxido-bridged dinuclear iron(III) complexes have been structurally characterized. Some of them belong to the C2 point group, possessing bent Fe–O–Fe bonds, while some others belong to the Ci symmetry, possessing the linear Fe–O–Fe bonds. The question in this study is what determines the structures and symmetry of oxido-bridged dinuclear iron(III) complexes. In order to gain further insights, three oxido-bridged dinuclear iron(III) complexes were newly prepared with 2,2′-bipyridine (bpy) and 1,10-phenanthroline (phen) ligands: [Fe2OCl2(bpy)4][PF6]2 (1), [Fe2O(NO3)2(bpy)4][PF6]2·0.6MeCN·0.2(2-PrOH) (2), and [Fe2OCl2(phen)4][PF6]2·MeCN·0.5H2O (3). The crystal structures of 1, 2, and 3 were determined by the single-crystal X-ray diffraction method, and all of them were found to have the bent Fe–O–Fe bonds. Judging from the crystal structure, some intramolecular interligand hydrogen bonds were found to play an important role in fixing the structures. Additional density functional theory (DFT) calculations were conducted, also for a related oxido-bridged dinuclear iron(III) complex with a linear Fe–O–Fe bond. We conclude that the Fe–O–Fe bridge tends to bend like a water molecule, but is often stretched by interligand steric repulsion, and that the structures are mainly controlled by the intramolecular interligand interactions.  相似文献   

10.
The reaction of tetrakis(pyridine‐2‐yl)pyrazine (tppz) with 2 equiv of (2,2′‐bpy)PtII in water yields two isomeric dinuclear cations, [{Pt(2,2′‐bpy)}2(tppz)]4+, in which Pt coordination exclusively takes place through the two pairs of pyridine‐2‐yl nitrogen atoms. The two conformational isomers differ in their overall shape, with the formation of “Z” and “U” shapes, which are formed at 40 °C (Z isomer, 1 ) and under reflux conditions (U isomer, 2 ), respectively. X‐ray crystal‐structure analyses of the Z isomer, [{Pt(2,2′‐bpy)}2(tppz)](PF6)4 ? 3 CHCl3 ? 4 H2O ( 1 a ), and of the U isomer, [{Pt(2,2′‐bpy)}2](PF6)4 ? 2 CH3CN ? 1.5 H2O ( 2 a ), were carried out. Co‐crystallization of compound 2 with PtCl2(2,2′‐bpy) yielded [{Pt(2,2′‐bpy)}2(tppz)](BF4)4?[PtCl2(2,2′‐bpy)] ? 4.5 H2O ( 3 ), in which the PtCl2(2,2′‐bpy) entity was sandwiched between the two 2,2′‐bpy faces of the U‐shaped cation ( 2 ). Quantum chemical calculations revealed that the U isomer was more stable than the Z isomer, both in the gas phase and in an aqueous environment. These two isomers display different affinities toward duplex DNA and human telomeric quadruplex DNA (Htelo), as concluded from CD spectroscopy and FID assays. Thus, the U isomer binds significantly more strongly to quadruplex DNA (DC50=0.38 μM ) than the Z isomer (DC50=8.50 μM ).  相似文献   

11.
The ligands [Ph2P(O)NP(E)Ph2] (E=S I; E=Se II) can readily be complexed to a range of palladium(II) starting materials affording new six-membered Pd–O–P–N–P–E palladacycles. Hence ligand substitution reaction of the chloride complexes [PdCl2(bipy)] (bipy=2,2′-bipyridine), [{Pd(μ-Cl)(L–L)}2] (HL–L=C9H13N or C12H13N), [{Pd(μ-Cl)Cl(PMe2Ph)}2] or [PdCl2(PR3)2] [PR3=PPh3; 2PR3=Ph2PCH2CH2PPh2or cis-Ph2PCH=CHPPh2] with either I (or II) in thf or CH3OH gave [Pd{Ph2P(O)NP(E)Ph2-O,E}(bipy)]PF6, [Pd{Ph2P(O)NP(E)Ph2-O,E}(L–L)], [Pd{Ph2P(O)NP(E)Ph2-O,E}Cl(PMe2Ph)] or [Pd{Ph2P(O)NP(E)Ph2-O,E} (PR3)2]PF6 in good yields. All compounds described have been characterised by a combination of multinuclear NMR [31 P{1 H} and 1 H] and IR spectroscopy and microanalysis. The molecular structures of five complexes containing the selenium ligand II have been determined by single-crystal X-ray crystallography. Three different ring conformations were observed, a pseudo-butterfly, hinge and in the case of all three PR3 complexes, pseudo-boat conformations. Within the Pd–O–P–N–P–Se rings there is evidence for π-electron delocalisation.  相似文献   

12.
A set of enantiomeric RuII complexes Δ- and Λ-[Ru(bpy)2TAPTP](PF6)2(bpy=2,2’-bipyridine, TAPTP=4,5,9,18-tetraazaphenanthreno[9,10-b]triphenylene) have been synthesized and characterized. Binding of both enantiomers to calf thymus DNA has been studied by spectroscopic methods, viscosity, and equilibrium dialysis. The experimental results indicated that both enantiomers bind to DNA by intercalation. Upon irradiation at 302 nm, both enantiomers were found to promote the cleavage of plasmid pBR 322 DNA from supercoiled form I to a nicked form II, and obvious enantioselectively was observed on DNA cleavage, the Λ- enantiomer exhibiting higher cleaving efficiency. The mechanisms for DNA cleavage by the two enantiomers are also proposed.  相似文献   

13.
Complexes [Ir(C^N)2(G1-bpy)]PF6, where C^N is a cyclometallating ligand derived from 2-(2′-thienyl)pyridine and 2-phenylpyridine, and G1-bpy is a dendritic bipyridine ligand of the first generation, 4,4′-bis[3″,5″-bis(benzyloxy)phenylethyl]-2,2′-bipyridine, were prepared and characterized by 1H NMR, electronic absorption, and emission spectroscopy. The polyether dendritic substituents exert a “ soft” effect on the spectral and luminescence properties of the complexes, manifested as slight destabilization of the electronically excited charge-transfer state involving the bipyridine ligand, as compared to the model complexes [Ir(C^N)2(bpy)]PF6.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 5, 2005, pp. 705–711.Original Russian Text Copyright © 2005 by Kulikova, McClenaghan, Balashev.  相似文献   

14.
The complex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) was prepared from [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 and CO or from 1 and NH4PF6 in presence of an excess of methanol. With an excess of CO, the dicarbonyl and tricarbonyl compounds trans-[Rh(CO)2(PiPr3)2]PF6 (3) and [Rh(CO)3(PiPr3)2]PF6 (4) were obtained. Displacement of one CO ligand in 3 by pyridine and acetone led to the formation of trans-[Rh(CO)(py)PiPr3)2]PF6 (5a) and trans-[Rh(CO) (O=CMe2(PiPr3)2]PF6 (6), respectively. Treatment of 1 with [pyH]BF4 and pyridine gave trans-[Rh(py)2(PiPr3)2]BF4 (7); in presence of H2 the dihydrido complex [RhH2(py)2(PiPr3)2]BF4 (8) was formed. The reaction of 1 with NH4PF6 and ethylene produced trans [Rh(C2H4(NH3(PiPr3)2]PF6(9) whereas with methylvinylketone and acetophenone the octahedral hydridorhodium(III) complexes [RhH(η2-CH=CHC(=O)CH3 (NH3(PiPr3)2]PF6(11) and [RhH(η2-C6H4C(=O)CH3(NH3(Pipr3)2]PF6 (13) were obtained. The synthesis of the cationic vinylidenerhodium(I) compounds trans-[Rh(=C=CHR)(py)(PiPr3)2]BF4 (14–16) and trans-[Rh(=C=CHR)(NH3)(PiPr3) 2]PF6 (17–19) was achieved either on treatment of 1 with [pyH]BF4 or NH4PF6 in presence of 1-alkynes or by ethylene displacement from 9 by HCCR. With tert-butylacetylene as substrate, the alkinyl(hydrido)rhodium(III) complex [RhH(CCtBu)(NH3)(O=CMe2)(PiPr3) 2]PF6 (20) was isolated which in CH2Cl2 solution smoothly reacted to give 19 (R =tBu). The cationic but-2-yne compound trans-[Rh(MeCCMe)(NH3)(Pi Pr3)2]PF6 (21) was prepared from 1, NH4PF6 and C2Me2. The molecular structures of 3 and 14 were determined by X-ray crystallography; in both cases the square-planar coordination around the metal and the trans disposition of the phosphine ligands was confirmed.

Abstract

Der Komplex trans-[Rh(CO)(NH3)(PiPr3)2]PF6 (2) wurde aus [(η3-C3H5)Rh(PiPr3)2] (1), NH4PF6 und CO oder aus 1, NH4PF6 und Methanol hergestellt. In Gegenwart von überschüssigem CO wurden die Dicarbonyl- und Tricarbonyl-Verbindungen trans-[Rh(CO)2(PiPr3)2]PF6 (3) und [Rh(CO)3(PiPr3)2]PF6 (4) erhalten. Die Verdrängung eines CO-Liganden in 3 durch Pyridin oder Aceton führte zur Bildung von trans-[Rh(CO)(py)(PiPr3)2]PF6 (5a) bzw. trans-[Rh(CO)(O=CMe2)(PiPr3)2]PF6 (6). Bei Einwirkung von [pyH]BF4 und Pyridin auf 1 entstand trans-[Rh(py)2(PiPr3)2]BF4 (7); in Gegenwart von H2 bildete sich der Dihydrido-Komplex [RhH2(py)2(PiPr3) 2]BF4 (8). Die Reaktion von 1 mit NH4PF6 und Ethen lieferte trans-[Rh(C2H4)(NH3)(PiPr3)2] PF6 (9) während mit Methylvinylketon und Acetophenon die oktaedrischen Hydridorhodium(III)-Komplexe [RhH(η2-CH=CHC(=O)CH3 (NH3)-(PiPr3)2]PF6 (11) und [RhH(η-2-C6H4C(=O)CH3(NH3)(PiPr3)2)2]PF6 (13) erhalten wurden. Die Synthese der kationischen Vinyli-denrhodium(I)-Verbindungen trans-[Rh(=C=CHR(py)(PiPr3)2]BF4 (14–16) und trans-[Rh(=C=CHR)(NH3)(PiPr3)2]PF6 (17–19) gelang durch Einwirkung von [pyH]BF4 bzw. NH4PF6 auf 1 in Gegenwart von 1-Alkinen oder durch Ethen-Verdrängung aus 9 mit HCCR. Mit tert-Butylacetylen als Reaktionspartner wurde der Alkinyl(hydrido)rhodium(III)-Komplex [RhH(CCtBu)(NH3(O=CMe2)(PiPr3)2]PF6 (20) isoliert, der in CH2Cl2-Lösung sofort zu 19 (R =tBu) reagiert. Die kationische 2-Butin-Verbindung trans -[Rh(MeCCMe)(NH3)PiPr3)2]PF6 (21) wurde aus 1, NH4PF6 und C2Me2 hergestellt. Die Strukturen von 3 und 14 wurden kristallographisch bestimmt; in beiden Fa len ließ sich die quadratisch-planare Koordination des Metalls und die trans-Anordnung der Phosphanliganden bestätigen.  相似文献   

15.
Mononuclear and dinuclear Ru(II) complexes cis-[Ru(κ2-dppm)(bpy)Cl2] (1), cis-[Ru(κ2-dppe)(bpy)Cl2] (2) and [Ru2(bpy)2(μ-dpam)2(μ-Cl)2](Cl)2 ([3](Cl)2) were prepared from the reactions between cis(Cl), cis(S)-[Ru(bpy)(dmso-S)2Cl2] and diphosphine/diarsine ligands (bpy = 2,2′-bipyridine; dppm = 1,1-bis(diphenylphosphino)methane; dppe = 1,2-bis(diphenylphosphino)ethane; dpam = 1,1-bis(diphenylarsino)methane). While methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppe)(C^O)]+ ([7]+; C^O = anionic bidentate [C(OMe)CHC(Ph)O] chelate) was obtained as the only product in the reaction between 2 and phenyl ynone HC≡C(C=O)Ph in MeOH, replacing 2 with 1 led to the formation of both methoxy-substituted ruthenafuran [Ru(bpy)(κ2-dppm)(C^O)]+ ([4]+) and phosphonium-ring-fused bicyclic ruthenafuran [Ru(bpy)(P^C^O)Cl]+ ([5]+; P^C^O = neutral tridentate [(Ph)2PCH2P(Ph)2CCHC(Ph)O] chelate). All of these aforementioned metallafuran complexes were derived from Ru(II)–vinylidene intermediates. The potential applications of these metallafuran complexes as anticancer agents were evaluated by in vitro cytotoxicity studies against cervical carcinoma (HeLa) cancer cell line. All the ruthenafuran complexes were found to be one order of magnitude more cytotoxic than cisplatin, which is one of the metal-based anticancer agents being widely used currently.  相似文献   

16.
The absorption spectra, luminescence spectra, excited-state lifetimes, and electrochemical behavior of the cyclometalated [Rh(ppz)2bpy]+, [Rh(3-Cl-ppz)2(bpy)]+, [Rh(4-NO2-ppz)2(bpy)]+, [Rh(ppz)2(biq)]+ and [Rh(4-NO2-ppz)2(biq)]+ complexes (ppz?, 3-Cl-ppz?, and 4-NO2-ppz? are the ortho-C-deprotonated forms of 1-phenylpyrazole, l-(3-chlorophenyl)pyrazole and l-(4-nitrophenyl)pyrazole, respectively) have been investigated. The results obtained have been compared with those concerning the free protonated ligands and some previously studied mixed-ligand cyclometalated Rh(III) complexes. Luminescence originates from the lowest ligand-centered (LC) excited state, which involves the diimine ligands in all cases except for [Rh(4-NO2-ppz)2(bpy)]+, where it involves the ortho-metalating ligand. s. In the absorption spectra, LC and metal-to-ligand charge-transfer (MLCT) bands, involving the diimine and/or the ortho-metalating ligands, have been assigned, and correlations between spectroscopic and electrochemical data are discussed.  相似文献   

17.
Two novel heterometallic trinuclear incomplete cubane-like clusters [(CH3CH2)4N][{M2CuS4}(edt)2(PPh3)] (M = Mo, W) have been synthesized by reaction of [(CH3CH2)4N]2[M2S4(edt)2] (M = Mo, W) with Cu(PPh3)2(dtp) [where edt is 1,2-ethane-dithiolato ligand, dtp is S2P(OCH2CH3)2]. The two crystals are isomorphous in space group P1 (No. 1). The unit cell contains two independent molecules, but the two discrete anions have the same orientation for the PPh3 ligands along one axis so the space group is undoubtedly non-centrosymmetric. The discrete anion contains two edt ligands and one PPh3 ligand attached to one incomplete cubane-like cluster core {M2CuS4}3+ (M = Mo, W). The bond lengths of Mo---Mo[W---W] and the two Mo---Cu[W-Cu] are 2.852(2)[2.844(1)], 2.802(2)[2.765(3)], 2.760(2)[2.762(3)] Å, respectively. The M 2S4(edt)2 (M = Mo, W) moiety remains almost unchanged, except that for the compound 1 the Mo=S double bond length elongates from av. 2.10 to av. 2.165 Å. The title clusters provide a new type of unsymmetric μ2-bridging sulphido ligand. The incomplete cubane-like cluster core {Mo2CuS4}3+ of compound 1 is distorted because the two Cu---μ2---S bond lengths are significantly different (2.313 Å and 2.409 Å), but the core {W2CuS4}3+ of compound 2 has approximately Cs symmetry. The IR spectra of the two title clusters and two starting materials are assigned.  相似文献   

18.
The mononuclear complexes [(η6-arene)Ru(ata)Cl]PF6 {ata = 2-acetylthiazole azine; arene = C6H6 [(1)PF6]; p-iPrC6H4Me [(2)PF6]; C6Me6 [(3)PF6]}, [(η5-C5Me5)M(ata)]PF6 {M = Rh [(4)PF6]; Ir [(5)PF6]} and [(η5-Cp)Ru(PPh3)2Cl] {η5-Cp = η5-C5H5 [(6)PF6]; η5-C5Me5 (Cp*) [(7)PF6]; η5-C9H7 (indenyl); [(8)PF6]} have been synthesised from the reaction of 2-acetylthiazole azine (ata) and the corresponding dimers [(η6-arene)Ru(μ-Cl)Cl]2, [(η5-C5Me5)M(μ-Cl)Cl]2, and [(η5-Cp)Ru(PPh3)2Cl], respectively. In addition to these complexes a hydrolysed product (9)PF6, was isolated from complex (4)PF6 in the process of crystallization. All these complexes are isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV–Vis spectroscopy. The molecular structures of [2]PF6 and [9]PF6 have been established by single-crystal X-ray structure analyses.  相似文献   

19.
Summary Tetracoordinated complexes of the [Rh{P(OPh)3}3X] type (X=N3, NO2 or NCS) were obtained in the reaction of [Rh{P(OPh)3}3Cl] with NaX. Pentacoordinated [Rh{P(OPh)3}4X] complexes (X=HSO4, H2PO4, MeCO2, HCO2 or ClO4) were prepared by treating [Rh{P(OPh)3}3 {P(OC6H4)(OPh)2}] or [Rh(acac) {P(OPh)3}2]+P(OPh)3 (Hacac=acetylacetone) with acids HX.The groups of complex differ in reactivity towards CO and H2; [Rh{P(OPh)3}3X] complexes do not react with dihydrogen and with CO they produce [Rh{P(OPh)3}2(CO)X]. The [Rh{P(OPh)3}4X] complexes take up H2 reversibly, and with CO they give [Rh{P(OPh)3}3(CO)2X] compounds.  相似文献   

20.
Treatment of [(ClAu)2(diphosphine)] {diphosphine=bis(diphenylphosphino)methane (dppm), bis(diphenylphosphino)isopropane (dppip), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp)} with two equivalents of the anion [Fe2(μ-CO)(CO)6(μ-PPh2)] in the presence of TlBF4 gives the new heterometallic diclusters [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}2(diphosphine)] that have been isolated and characterized. Their 31P-NMR spectra show different patterns as a function of the diphosphine ligand. The electrochemical behavior of these compounds has been investigated and compared with that of the mono- [Fe2(μ-CO)(CO)6(μ-PPh2)(μ-AuPPh3)] and tricluster [{Fe2(μ-CO)(CO)6(μ-PPh2)Au}3(triphos)] derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号