首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The structure and thermal stability of a hexagonal tungsten bronze (HTB) related compound, LaxWO3+y with x≈0.10 and y≈0.15, has been studied by X-ray diffraction, thermal analysis, and electron microscopy. The structure was refined by the Rietveld method from X-ray powder diffractometer data of a La0.10WO3 sample prepared at T=1250°C and P=25 kbar, which consisted of two tungsten bronze related phases in 1:1 proportion. The unit cell dimensions are as follows: La0.108WO3+y (y≈0.16), a=7.40890(5), and c=3.79329(4) Å (HTB-related structure); La0.091WO3, a=3.82458(6) Å (cubic perovskite tungsten bronze (PTB) structure). The lanthanum atoms in La0.108WO3+y are located on the hexagonal axis and statistically distributed on two sites close to the tungsten atom plane. Thermal stability studies of the La0.10WO3 sample in an argon atmosphere under ambient pressure conditions revealed that the HTB-related compound is metastable, decomposing to the stable PTB-type structure and WO3. It was also found from the TG experiments in argon and oxygen that additional oxygen atoms (y) are present in the structure, thus forming a lanthanum tungsten oxide of the above composition. The electron diffraction and microanalysis studies confirmed that crystals of the HTB- and PTB-type structures were formed, with a lanthanum content of x≈0.1.  相似文献   

2.
The structure of a new barium tungsten bronze, Ba0.15WO3, has been established by X-ray diffraction and high-resolution microscopy studies. This bronze is orthorhombic, space group Pbm2 or Pbmm, with a = 8.859(3) Å, b = 10.039(8) Å, and c = 3.808(2)Å. The “WO3” framework is built up from corner-sharing WO6 octahedra forming pentagonal tunnels where the barium ions are located. Structural relationships with hexagonal tungsten bronze and tetragonal tungsten bronze structures are discussed.  相似文献   

3.
It has been found that a perovskite-related zirconium tungsten bronze ZrxWO3 (with 0 < x ? 0.08) forms readily at temperatures between 973 and 1573° K. Prolonged heating causes the bronze to decompose to other oxide products at all the temperatures investigated. These results are summarized in phase diagrams. Possible reasons for the decomposition of the bronze are discussed.  相似文献   

4.
The crystal structure of Bi0.7Yb1.3WO6 (a representative of the isomorphous series Bi2−xLnxWO6; 0.3<x<1.3, for most lanthanides) has been determined. Contrary to previous suggestions, this structure type (space group A2; a=8.1070(3) Å, b=3.7048(2) Å, c=15.8379(8) Å, β=103.548(4)°) contains layers of stoichiometry WO4, containing WO6 octahedra sharing both edges and corners. These layers alternate with fluorite-like (Bi/Yb)2O2 sheets; this is a novel and unexpected arrangement and contrasts dramatically with the purely corner-sharing octahedral WO4-layer in the parent Aurivillius phase Bi2WO6.  相似文献   

5.
The compound Y2WO6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO6] distorted cubes coordination, connecting [YO6] distorted cubes with oxygen vacancies at the O2 layers while other yttrium ions Y2 form [YO8] cube coordination. Y3+ ions occupy two crystallographic sites of 2c (C4v symmetry) and 2a (D2d symmetry) in the Y2WO6 host lattice. With Eu3+ ions doped, the high resolution emission spectrum of Y2WO6:Eu3+ suggests that Eu3+ partly substituted for Y3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu3+ dopants preferentially enter the 2a site. The uniform cube coordination environment of Eu3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.  相似文献   

6.
A high-pressure reaction yielded the fully occupied tetragonal tungsten bronze K3W5O15 (K0.6WO3). The terminal phase shows an unusual transport property featuring slightly negative temperature-dependence in resistivity (dρ/dT<0) and a large Wilson ratio of RW=3.2. Such anomalous metallic behavior possibly arises from the low-dimensional electronic structure with a van Hove singularity at the Fermi level and/or from enhanced magnetic fluctuations by geometrical frustration of the tungsten sublattice. The asymmetric nature of the tetragonal tungsten bronze KxWO3-K0.6−yBayWO3 phase diagram implies that superconductivity for x≤0.45 originates from the lattice instability because of potassium deficiency. A cubic perovskite KWO3 phase was also identified as a line phase—in marked contrast to NaxWO3 and LixWO3 with varying quantities of x (<1). This study presents a versatile method by which the solubility limit of tungsten bronze oxides can be extended.  相似文献   

7.
采用电化学还原法在表面改性的碳布上,通过改变催化剂沉积顺序及氢钨青铜沉积时间制备铂-氢钨青铜复合催化剂,所得电极作为质子交换膜燃料电池(PEMFC)阳极。利用X射线衍射(XRD)、热重分析(TG)、扫描电子显微镜(SEM)、循环伏安(CV)及单电池极化性能测试研究了催化剂的组成、沉积量、分散性及其对氢氧化的电催化活性。实验结果表明,氢钨青铜沉积时间及催化剂沉积顺序对电极催化性能有显著影响,当氢钨青铜沉积时间为10 min,先沉积氢钨青铜、后沉积铂所得Pt/HxWO3电极对氢氧化具有最佳的催化活性。适量的氢钨青铜才能与铂形成较好的协同催化效应。  相似文献   

8.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

9.
The syntheses, structures, and characterization of a new family of quaternary alkali tungsten tellurites, A2TeW3O12 (A=K, Rb, or Cs), are reported. Crystals of the materials were synthesized by supercritical hydrothermal methods using 1 M AOH (A=K, Rb, or Cs), TeO2, and WO3 as reagents. Bulk, polycrystalline phases were synthesized by standard solid-state methods combining stoichiometric amounts of A2CO3, TeO2, and WO3. Although the three materials are not iso-structural, each exhibits a hexagonal tungsten oxide layer comprised of corner-sharing W6+O6 octahedra. Te4+O3 groups connect the WO6 layers in K2TeW3O12, whereas the same groups cap the WO6 layers in Rb2TeW3O12 and Cs2TeW3O12. This capping results in non-centrosymmetric structures for Rb2TeW3O12 and Cs2TeW3O12. Powder second-harmonic generation measurements on Rb2TeW3O12 and Cs2TeW3O12 revealed strong SHG efficiencies of 200 and 400×SiO2, respectively. These values indicate an average non-linear optical susceptibility, 〈deffexp of 16 and 23 pm/V for Rb2TeW3O12 and Cs2TeW3O12, respectively. Crystallographic information: K2TeW3O12, monoclinic, space group P21/n (No. 14), a=7.3224(13) Å, b=11.669(2) Å, c=12.708(2) Å, β=90.421(3)°, Z=4; Rb2TeW3O12, trigonal, space group P31c (No. 159), a=b=7.2980(2) Å, c=12.0640(2) Å, Z=2.  相似文献   

10.
The substitution of nickel by platinum in the binary LaNi5 compound (CaCu5 structure type, a=5.019(1) Å, c=3.981(1) Å, space group P6/mmm) and its effect on the hydrogenation properties was studied. The phase LaNi5−xPtx has a homogeneity domain ranging from x=0 to 5. For x<3, platinum substitutes almost exclusively on site 3g and also replaces nickel on site 2c for x>3. Contrary to what is observed in other systems, the hydrogen absorption plateau pressure was found to increase as a function of the cell volume. Powder neutron diffraction experiments were conducted for two deuterated compounds with x=0.25 and 0.75. Deuterium partial ordering occurs in the case of x=0.25 leading to a symmetry decrease to the space group P6mm (LaNi4.75Pt0.25D5.23, a=4.225(1) Å, c=5.357(1) Å, Z=1, RBragg=3.3%). For x=0.75, an orthorhombic superstructure based on the CaCu5-type lattice was found (LaNi4.25Pt0.75D2.61, aorth=√3ahex=9.089(1) Å, borth=bhex=5.272(1) Å, corth=2chex=8.145(1) Å, Z=4, SG Ibam, RBragg=6.1%).  相似文献   

11.
Polycrystalline Sr2−xNdxFeMoO6 (x=0.0, 0.1, 0.2, 0.4) materials have been synthesized by a citrate co-precipitation method and studied by neutron powder diffraction (NPD) and magnetization measurements. Rietveld analysis of the temperature-dependent NPD data shows that the compounds (x=0.0, 0.1, 0.2) crystallize in the tetragonal symmetry in the range 10-400 K and converts to cubic symmetry above 450 K. The unit cell volume increases with increasing Nd3+ concentration, which is an electronic effect in order to change the valence state of the B-site cations. Antisite defects at the Fe-Mo sublattice increases with the Nd3+ doping. The Curie temperature was increased from 430 K for x=0 to 443 K for x=0.4. The magnetic moment of the Fe-site decreases while the Mo-site moment increases with electron doping. The antiferromagnetic arrangement causes the system to show a net ferrimagnetic moment.  相似文献   

12.
The Curie temperature and its correlation with the magnitude of the displacement of the niobium atom from the center of [NbO6] octahedra in NaSr2Nb5O15 nanostructured powder were investigated. A single powder was prepared by high-energy ball milling. A powder with an average crystallite size of 37 nm was prepared by calcining the precursor at 1423 K. The refinement of the structural parameters was carried out by the Rietveld method. NaSr2Nb5O15 exhibits tetragonal symmetry with the tungsten bronze structure (a=b=12.3495 (6) Å, c=3.8911 (2) Å, V=593.432 (5) Å3, and Z=2). The site occupancy of the Na+ and Sr2+ cations and the interatomic distances between the niobium and oxygen atoms were derived. The [NbO6] octahedron undergoes both rotation and tilting depending on the crystallographic site. The Curie temperature of the powder was derived using both the impedance and infrared spectroscopy methods.  相似文献   

13.
The perovskite-related phase Ca3Nb2O8, when grown as single crystals from a calcium vanadate flux, incorporates a small amount of vanadium from the flux to form the composition Ca3Nb2−xVxO8 with x=0.025. The crystals have pseudo-cubic symmetry with a=6×ac(perovskite). The actual symmetry is rhombohedral, space group R3, with ah=16.910(1) Å, ch=41.500(2) Å. The structure was solved using a combination of single-crystal methods together with constrained refinements of powder X-ray and neutron powder data. The unit-cell composition is [Ca13824]A [Ca42Nb117V3]B[O4806], with vacancies in both the anion sites and A-cation sites. The Ca and Nb atoms are fully ordered in the B-sites such that (001) layers containing only Nb-centered octahedra alternate with layers containing both Nb-centered and Ca-centered octahedra. At the origin B-site, ordered oxygen vacancies result in the octahedron being transformed to a tetrahedron, which, in the single crystals, is occupied by vanadium. The structure displays a new type of octahedral tilt system in which 3×3×3 blocks of (a+a+a+) tilts are periodically twinned on the pseudo-cubic {1 0 0}c planes.  相似文献   

14.
A series of lithium europium double tungsto-molybdate phosphors LiEu(WO4)2−x(MoO4)x (x=0, 0.4, 0.8, 1.2, 1.6, 2.0) have been synthesized by solid-state reactions and their crystal structure, optical and luminescent properties were studied. As the molybdate content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm was found to increase and reach a maximum when the relative ratio of Mo/W is 2:0. These changes were found to be accompanied with the changes in the spectral feature, which can be attributed to the crystal field splitting of the 5D07F2 transition. As the molybdate content increases the emission intensity of the 615 nm peak also increases. The intense red-emission of the tungstomolybdate phosphors under near-UV excitation suggests them to be potential candidate for white light generation by using near-UV LEDs. In this study the effect of chemical compositions and crystal structure on the photoluminescent properties of LiEu(WO4)2−x(MoO4)x is investigated and discussed.  相似文献   

15.
Subsolidus phase relationships in the In2O3-WO3 system at 800-1400°C were investigated using X-ray diffraction. Two binary-oxide phases—In6WO12 and In2(WO4)3—were found to be stable over the range 800-1200°C. Heating the binary-oxide phases above 1200°C resulted in the preferential volatilization of WO3. Rietveld refinement was performed on three structures using X-ray diffraction data from nominally phase-pure In6WO12 at room temperature and from nominally phase-pure In2(WO4)3 at 225°C and 310°C. The indium-rich phase, In6WO12, is rhombohedral, space group (rhombohedral), with Z=1, a=6.22390(4) Å, α=99.0338(2)° [hexagonal axes: aH=9.48298(6) Å, c=8.94276(6) Å, aH/c=0.9430(9)]. In6WO12 can be viewed as an anion-deficient fluorite structure in which 1/7 of the fluorite anion sites are vacant. Indium tungstate, In2(WO4)3, undergoes a monoclinic-orthorhombic transition around 250°C. The high-temperature polymorph is orthorhombic, space group Pnca, with a=9.7126(5) Å, b=13.3824(7) Å, c=9.6141(5) Å, and Z=4. The low-temperature polymorph is monoclinic, space group P21/a, with a=16.406(2) Å, b=9.9663(1) Å, c=19.099(2) Å, β=125.411(2)°, and Z=8. The structures of the two In2(WO4)3 polymorphs are similar, consisting of a network of corner sharing InO6 octahedra and WO4 tetrahedra.  相似文献   

16.
Attempts have been made to prepare tungsten bronze phases from the Group IIIA metals, Al, Ga, and In. Of these, only In seems to from bronzes with any facility and three distinct compounds were characterized. Two of these were perovskite-type phases, one of tetragonal symmetry, with lattice parameters a = 0.3714 nm, c = 0.3870 nm, which forms below 1173 K and one of orthorhombic (pseudotetragonal) symmetry, with lattice parameters a = 0.3696 nm, b = 0.3722 nm, and c = 0.3859 nm, which forms above 1173 K. Both of these have a composition of approximately In0.02WO3. The third phase which formed in this system was a hexagonal tungsten bronze which has been characterized already. In neither the AlWO or the GaWO systems were stable bronzes formed, but some evidence suggested that metastable perovskite bronzes may form in the GaWO system in some circumstances. The formation of these phases is discussed and related to the formation of tungsten bronzes in general.  相似文献   

17.
In this work, a study was undertaken about the structural and photoluminescent properties, at room temperature, of powder samples from the CaxSr1−xWO4 (x=0-1.0) system, synthesized by a soft chemical method and heat treated between 400 and 700 °C. The material was characterized using Infrared, UV-vis and Raman spectroscopy and XRD. The most intense PL emission was obtained for the sample calcined at 600 °C, which is neither highly disordered (400-500 °C), nor completely ordered (700 °C). Corroborating the role of disorder in the PL phenomenon, the most intense PL response was not observed for pure CaWO4 or SrWO4, but for Ca0.6Sr0.4WO4. The PL emission spectra could be separated into two Gaussian curves. The lower wavelength peak is placed around 530 nm, and the higher wavelength peak at about 690 nm. Similar results were reported in the literature for both CaWO4 and SrWO4.  相似文献   

18.
Samples of Bi1−xTbxFeO3, with x=0.05, 0.10, 0.15, 0.20 and 0.25, have been synthesised by solid state reaction. The crystal structures of the perovskite phases, characterised via Rietveld analysis of high resolution powder neutron diffraction data, reveal a structural transition from the R3c symmetry of the parent phase BiFeO3 to orthorhombic Pnma symmetry, which is complete for x=0.20. The x=0.10 and 0.15 samples are bi-phasic. The transition from a rhombohedral to orthorhombic unit cell is suggested to be driven by the dilution of the stereochemistry of the Bi3+ lone pair at the A-site. The G-type antiferromagnetic spin structure, the size of the ordered magnetic moment (∼3.8 μB) and the TN (∼375 °C) are relatively insensitive to increasing Tb concentrations at the A-site.  相似文献   

19.
Phase equilibria, crystal structure, and transport properties in the (100−x) La0.95Ni0.6Fe0.4O3-xCeO2 (LNFCx) system (x=2-75 mol%) were studied in air. Evolution of phase compositions and crystal structure of components was observed. The LNFCx (2≤x≤10) are three-phase and comprise the perovskite phase with rhombohedral symmetry (R3?c), the modified ceria with fluorite structure (Fm3?m), and NiO as a secondary phase. These multiphase compositions exhibit metallic-like conductivity above 300 °C. Their conductivity gradually decreases from 395.6 to 260.6 S/cm, whereas the activation energy remains the same (Ea=0.04-0.05 eV), implying the decrease in the concentration of charge carriers. Phase compositions in the LNFCx (25≤x≤75) are more complicated. A change from semiconducting to metallic-like conductivity behavior was observed in LNFC25 at about 550 °C. The conductivity of LNFCx (25≤x≤75) could be explained in terms of a modified simple mixture model.  相似文献   

20.
The solid-state reactions of UO3 and WO3 with M2CO3 (M=Na, K, Rb) at 650°C for 5 days result, accordingly the starting stoichiometry, in the formation of M2(UO2)(W2O8) (M=Na (1), K (2)), M2(UO2)2(WO5)O (M=K (3), Rb (4)), and Na10(UO2)8(W5O20)O8 (5). The crystal structures of compounds 2, 3, 4, and 5 have been determined by single-crystal X-ray diffraction using Mo(Kα) radiation and a charge-coupled device detector. The crystal structures were solved by direct methods and Fourier difference techniques, and refined by a least-squares method on the basis of F2 for all unique reflections. For (1), unit-cell parameters were determined from powder X-ray diffraction data. Crystallographic data: 1, monoclinic, a=12.736(4) Å, b=7.531(3) Å, c=8.493(3) Å, β=93.96(2)°, ρcal=6.62(2) g/cm3, ρmes=6.64(1) g/cm3, Z=4; 2, orthorhombic, space group Pmcn, a=7.5884(16) Å, b=8.6157(18) Å, c=13.946(3) Å, ρcal=6.15(2) g/cm3, ρmes=6.22(1) g/cm3, Z=8, R1=0.029 for 80 parameters with 1069 independent reflections; 3, monoclinic, space group P21/n, a=8.083(4) Å, b=28.724(5) Å, c=9.012(4) Å, β=102.14(1)°, ρcal=5.83(2) g/cm3, ρmes=5.90(2) g/cm3, Z=8, R1=0.037 for 171 parameters with 1471 reflections; 4, monoclinic, space group P21/n, a=8.234(1) Å, b=28.740(3) Å, c=9.378(1) Å, β=104.59(1)°, ρcal=6.13(2) g/cm3,  g/cm3, Z=8, R1=0.037 for 171 parameters with 1452 reflections; 5, monoclinic, space group C2/c, a=24.359(5) Å, b=23.506(5) Å, c=6.8068(14) Å, β=94.85(3)°, ρcal=6.42(2) g/cm3,  g/cm3, Z=8, R1=0.036 for 306 parameters with 5190 independent reflections. The crystal structure of 2 contains linear one-dimensional chains formed from edge-sharing UO7 pentagonal bipyramids connected by two octahedra wide (W2O8) ribbons formed from two edge-sharing WO6 octahedra connected together by corners. This arrangement leads to [UW2O10]2− corrugated layers parallel to (001). Owing to the unit-cell parameters, compound 1 probably contains similar sheets parallel to (100). Compounds 3 and 4 are isostructural and the structure consists of bi-dimensional networks built from the edge- and corner-sharing UO7 pentagonal bipyramids. This arrangement creates square sites occupied by W atoms, a fifth oxygen atom completes the coordination of W atoms to form WO5 distorted square pyramids. The interspaces between the resulting [U2WO10]2− layers parallel to plane are occupied by K or Rb atoms. The crystal structure of compound 5 is particularly original. It is based upon layers formed from UO7 pentagonal bipyramids and two edge-shared octahedra units, W2O10, by the sharing of edges and corners. Two successive layers stacked along the [100] direction are pillared by WO4 tetrahedra resulting in sheets of double layers. The sheets are separated by Na+ ions. The other Na+ ions occupy the rectangular tunnels created within the sheets. In fact complex anions W5O2010− are built by the sharing of the four corners of a WO4 tetrahedron with two W2O10 dimmers, so, the formula of compound 5 can be written Na10(UO2)8(W5O20)O8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号