首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray single-crystal diffraction, high-temperature powder diffraction and differential thermal analysis at ambient and high pressure have been employed to study the crystal structure and phase transitions of guanidinium trichlorostannate, C(NH2)3SnCl3. At 295 K the crystal structure is orthorhombic, space group Pbca, Z=8, a=7.7506(2) Å, b=12.0958(4) Å and c=17.8049(6) Å, solved from single-crystal data. It is perovskite-like with distorted corner-linked SnCl6 octahedra and with ordered guanidinium cations in the distorted cuboctahedral voids. At 400 K the structure shows a first-order order-disorder phase transition. The space group is changed to Pnma with Z=4, a=12.1552(2) Å, b=8.8590(2) Å and c=8.0175(1) Å, solved from powder diffraction data and showing disordering of the guanidinium cations. At 419 K, the structure shows yet another first-order order-disorder transformation with disordering of the SnCl3 part. The space group symmetry is maintained as Pnma, with a=12.1786(2) Å, b=8.8642(2) Å and c=8.0821(2) Å. The thermodynamic parameters of these transitions and the p-T phase diagram have been determined and described.  相似文献   

2.
Two new compounds, La5Ti2MS5O7 (M=Cu, Ag) were synthesized and their structures solved from single crystal X-ray data. Both compounds are isotypic. They crystallize in the orthorhombic system (space group Pnma, Z=4) with lattice constants a=19.423(1) Å, b=3.9793(2) Å, c=18.1191(9) Å for La5Ti2CuS5O7, and a=19.593(2) Å, b=3.9963(1) Å, and c=18.2973(15) Å for La5Ti2AgS5O7. The structure of these compounds is built from fragments of the rock-salt, perovskite and fluorite types and a clear anionic segregation of the anions appears in the structure. La5Ti2CuS5O7 and La5Ti2AgS5O7 exhibit an orange-yellow color and measurement of their optical band gap gave 2.02 and 2.17 eV, respectively.  相似文献   

3.
The new phase Ir13Al45 was synthesized in equilibrium with an aluminum-rich melt. Its crystal structure was established from single-crystal diffraction data. The compound crystallizes in the space group Pnma and represents a novel structure type (Pearson symbol oP232, a=16.760(2) Å, b=12.321(1) Å, c=17.425(2) Å). The structure can essentially be described as a simple hexagonal column packing of pseudopentagonal columns formed by irregular Al polyhedra centered by Ir atoms. Ir13Al45 forms peritectically at 895 °C and exists in equilibrium with the melt in a narrow temperature interval of 19 °C.  相似文献   

4.
The isotypic oxonitridosilicate halides Ce10[Si10O9N17]Br, Nd10[Si10O9N17]Br and Nd10[Si10O9N17]Cl were obtained by the reaction of the respective lanthanide metals, their oxides and halides with “Si(NH)2” in a radiofrequency furnace at temperatures around 1800 °C, using CsBr, resp. CsCl, as a flux. The crystal structures were determined by single-crystal X-ray diffraction (Pbam, no. 55, Z=2; Ce/Br: a=10.6117(9) Å, b=11.2319(10) Å, c=11.688(8) Å, R1=0.0356; Nd/Br: a=10.523(2) Å, b=11.101(2) Å, c=11.546(2) Å, R1=0.0239; Nd/Cl: a=10.534(2) Å, b=11.109(2) Å, c=11.543(2) Å, R1=0.0253) and represent a new layered structure type. The structure refinements were performed utilizing an O/N-distribution model according to Paulings rules, i.e. nitrogen was positioned on all bridging sites and mixed O/N-occupation was assumed on the terminal sites resulting in charge neutrality of the compounds. The layers consist of condensed [SiN2(O/N)2] and [SiN3(O/N)] tetrahedra of Q2 and Q3 type. The chemical composition of the compounds was derived from chemical analyses for Nd10[Si10O9N17]Br and electron probe micro analyses (EPMA) for all three compounds. The results of IR spectroscopic investigations are reported.  相似文献   

5.
Two new complex vanadyl(IV)phosphates Na2MVO(PO4)2 (M=Ca, Sr) were synthesized in evacuated quartz ampoules and investigated by means of X-ray diffraction, electron microscopy, DTA, ESR and magnetic susceptibility measurements. The crystal structure of Na2SrVO(PO4)2 was solved ab initio from X-ray powder diffraction data. Both compounds are isostructural: a=10.5233(3) Å, b=6.5578(2) Å, c=10.0536(3) Å and a=10.6476(3) Å, b=6.6224(2) Å, c=10.2537(3) Å for Ca and Sr, respectively; S.G. Pnma, Z=4. The compounds have a three-dimensional structure consisting of V4+O6 octahedra connected by PO4 tetrahedra via five of the six vertexes forming a framework with cross-like channels. The strontium and sodium atoms are located in the channels in an ordered manner. Electron diffraction as well as high-resolution electron microscopy confirmed the structure solution. The new vanadylphosphates are Curie-Weiss paramagnets in a wide temperature range down to 2 K with θ=12 and 5 K for Ca and Sr phases, respectively.  相似文献   

6.
Magnetic and crystal structures of the manganite Pr0.8Ca0.2MnO3 have been studied by neutron powder and single-crystal X-ray diffraction. Structure refinements using single crystal data [orthorhombic system, Pnma, (No. 62), aRT=5.5534(3) Å, bRT=7.6548(8) Å, cRT=5.4400(5) Å, Dx=6.422 g cm−3, RRT=0.029, RwRT=0.038] are consistent with a single domain sample. Structure and atomic displacement parameters exclude any electronic localization, even in a disordered way at 300 and 100 K. Low temperature electron diffraction observations do not show any trace of charge ordering.A Pr contribution to the magnetic structure has been shown with a maximum moment of 0.79 μB and spins alignments roughly along [101] orientations, at a lower temperature than the ferromagnetic transition observed at 130 K, due to Mn spins ordering.  相似文献   

7.
A new rare earth nickel stannide, Sm2NiSn4, has been prepared by reacting the pure elements at high temperature in welded tantalum tubes. Its crystal structure was established by single crystal X-ray diffraction studies. Sm2NiSn4 crystallizes in the orthorhombic space group Pnma (No. 62) with cell parameters of a=16.878(2) Å, b=4.4490(7) Å, c=8.915(1) Å, and Z=4. Its structure can be viewed as the intermediate type between ZrSi2 and CeNiSi2. Sm2NiSn4 features two-dimensional (2D) corrugated [NiSn4]6− layers in which the 1D Sn zigzag chains and the 2D Sn square sheets are bridged by Ni atoms. The Sm3+ cations are located at the interlayer space. Results of both resistivity measurements and extended-Hückel tight-binding band structure calculations indicate that Sm2NiSn4 is metallic.  相似文献   

8.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

9.
Na2Mn2S3 was oxidatively deintercalated using iodine in acetonitrile to yield Na1.3Mn2S3, with lattice constants nearly identical to that of the reactant. Lithium was then reductively intercalated into the oxidized product to yield Li0.7Na1.3Mn2S3. When heated, this metastable compound decomposed to form a new crystalline compound, LiNaMnS2, along with MnS and residual Na2Mn2S3. Single crystal X-ray diffraction structural analysis of LiNaMnS2 revealed that this compound crystallizes in P-3m1 with cell parameters a=4.0479(6) Å, c=6.7759(14) Å, V=96.15(3) Å3 (Z=1, wR2=0.0367) in the NaLiCdS2 structure-type.  相似文献   

10.
The intermetallic compound Co7+xZn3−xSn8 (−0.2<x<0.2) forms from the reaction of cobalt in zinc/tin eutectic flux. This phase has a new structure type in orthorhombic space group Cmcm, with unit cell parameters a=4.138(1) Å, b=12.593(4) Å, and c=11.639(4) Å (Z=2; R1=0.0301). Varying the amount of cobalt in the synthesis leads to formation of a superstructure in space group Pnma, with lattice parameters a=12.5908(2) Å, b=11.6298(3) Å, and c=8.2704(2) Å (Z=4; R1=0.0347). A Co/Zn mixed site and a partially occupied Co site in the Cmcm structure order to form the Pnma supercell. TGA/DSC studies indicate that the binary phase CoSn initially forms in the flux at 1173 K, and then reacts with the zinc in the cooling solution to form the ternary structure at 823 K. This phase exhibits Pauli paramagnetic behavior.  相似文献   

11.
Application of high-pressure high-temperature conditions (3.5 GPa at 1673 K for 5 h) to mixtures of the elements (RE:B:S=1:3:6) yielded crystalline samples of the isotypic rare earth-thioborate-sulfides RE9[BS3]2[BS4]3S3, (RE=Dy-Lu), which crystallize in space group P63 (Z=2/3) and adopt the Ce6Al3.33S14 structure type. The crystal structures were refined from X-ray powder diffraction data by applying the Rietveld method. Dy: a=9.4044(2) Å, c=5.8855(3) Å; Ho: a=9.3703(1) Å, c=5.8826(1) Å; Er: a=9.3279(12) Å, c=5.8793(8) Å; Tm: a=9.2869(3) Å, c=5.8781(3) Å; Yb: a=9.2514(5) Å, c=5.8805(6) Å; Lu: a=9.2162(3) Å, c=5.8911(3) Å. The crystal structure is characterized by the presence of two isolated complex ions [BS3]3- and [BS4]5- as well as [□(S2-)3] units.  相似文献   

12.
A novel layered vanadium arsenate [V4O7(HAsO4)2(o-phen)2] 1 (o-phen=o-phenanthroline) was synthesized by the hydrothermal reaction of V2O5, ZnCl2, Na2HAsO4·7H2O, o-phenanthroline (o-phen) and water. Its structure was determined by elemental analyses, ESR spectrum, XPS spectrum, TG analysis, IR spectrum and the single-crystal X-ray diffraction. Compound 1 crystallizes in monoclinic system, space group P2/c, a=10.122(2) Å, b=9.867(2) Å, c=15.367(3) Å, β=102.83(3)°, V=1496.4(5) Å3, Z=1, λ(MoKα)=0.71073 Å, (R(F)=0.0397 for 3422 reflections). Data were collected on a Rigaku R-AXIS RAPID IP diffractometer at 293 K in the range of 2.06°<θ<27.48°. The title compound contains an unusual two-dimensional (2D) As-V-O layer with four-, six- and eight-membered rings. The chelating o-phen ligands project perpendicularly above and below the undulating layer. 1 represents the first example of 2D inorganic vanadium arsenate backbone grafted with the directly coordinated organic ligands. Furthermore, the 3D supermolecular architecture is formed by π-π stacking interactions of the o-phen groups between adjacent layers.  相似文献   

13.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

14.
The new quaternary lanthanum copper oxysulfide La3CuO2S3 has been synthesized by the reaction of La2S3 and CuO at 1223 K. This compound crystallizes in space group Pnma of the orthorhombic system with four formula units in a cell of dimensions at 153 K of a=14.0318(7) Å, b=3.9342(2) Å, and c=12.5212(6) Å. The structure of La3CuO2S3 consists of a three-dimensional framework of interconnected LaOnS8−n bicapped trigonal prisms and CuS4 tetrahedra. Optical absorption measurements on a La3CuO2S3 single crystal led to derived band gaps of 2.01 eV in both the [010] and [001] directions.  相似文献   

15.
A new compound Ce12Pt7In was synthesized and its crystal structure at 300 K has been determined from single crystal X-ray data. It is tetragonal, space group I4/mcm, Z=4, with the lattice parameters: a=12.102(1) Å and c=14.542(2) Å, wR2=0.1102, 842 F2 values, 33 variable parameters. The structure of Ce12Pt7In is a fully ordered ternary derivative of the Gd3Ga2-type. Isostructural compounds has been found to form with Pr (a=11.976(1) Å, c=14.478(2) Å), Nd (a=11.901(1) Å, c=14.471(2) Å), Gd (a=11.601(3) Å, c=14.472(4) Å), and Ho (a=11.369(1) Å, c=14.462(2) Å). Magnetic properties of Ce12Pt7In, Pr12Pt7In and Nd12Pt7In were studied down to 1.7 K. All three ternaries order magnetically at low temperatures with complex spin arrangements. The electrical resistivity of Ce12Pt7In and Nd12Pt7In is characteristic of rare-earth intermetallics.  相似文献   

16.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

17.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

18.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   

19.
Na2Ni(HPO3)2, obtained as light yellow-green crystals under mild hydrothermal conditions, crystallizes in the orthorhombic Pnma space-group with lattice parameters: a=11.9886(3), b=5.3671(2), c=9.0764(3) Å, V=584.01 Å3, Z=4. The structure consists of zig-zag chains of NiO6 octahedra bridged by two HPO32− and the chains are further connected through HPO32− to four nearest chains to form a three dimensional framework, delimiting intersecting tunnels in which the sodium ions are located. The Na cations reside in the irregular Na(1)O5, Na-O of 2.276-2.745 Å, and Na(2)O9, Na-O of 2.342-2.376 Å, environments. The presence of the phosphite monoanion has been further confirmed by IR spectroscopy. Due to the 3D framework of Ni connected by O-P-O bridges, the magnetic susceptibility behaves as a paramagnet above 100 K (C=1.49(2) emu K mol−1, μeff=3.45 μB, Θ=−39(2) K) and below 6 K, it orders antiferromagnetically as confirmed the sharp drop and the non-Brillouin behavior of the isothermal magnetization at 2 K.  相似文献   

20.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号