首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

2.
The quaternary oxychalcogenides Ln4MnOSe6 (Ln=La, Ce, Nd), Ln4FeOSe6 (Ln=La, Ce, Sm), and La4MnOS6 have been synthesized by the reactions of Ln (Ln=La, Ce, Nd, Sm), M (M=Mn, Fe), Se, and SeO2 at 1173 K for the selenides or by the reaction of La2S3 and MnO at 1173 K for the sulfide. Warning: These reactions frequently end in explosions. These isostructural compounds crystallize with two formula units in space group of the hexagonal system. The cell constants (a, c in Å) at 153 K are: La4MnOSe6, 9.7596(3), 7.0722(4); La4FeOSe6, 9.7388(4), 7.0512(5); Ce4MnOSe6, 9.6795(4), 7.0235(5); Ce4FeOSe6, 9.6405(6), 6.9888(4); Nd4MnOSe6, 9.5553(5), 6.9516(5); Sm4FeOSe6, 9.4489(5), 6.8784(5); and La4MnOS6, 9.4766(6), 6.8246(6). The structure of these Ln4MOQ6 compounds comprises a three-dimensional framework of interconnected LnOQ7 bicapped trigonal prisms, MQ6 octahedra, and the unusual LnOQ6 tricapped tetrahedra.  相似文献   

3.
The six LnYbQ3 compounds β-LaYbS3, LaYbSe3, CeYbSe3, PrYbSe3, NdYbSe3, and SmYbSe3 have been synthesized from high-temperature solid-state reactions of the constituent elements at 1223 K. The compounds are isostructural to UFeS3 and crystallize in the space group Cmcm of the orthorhombic system with four formula units in a cell. Cell constants (Å) at 153 K are: β-LaYbS3, 3.9238(8), 12.632(3), 9.514(2); LaYbSe3, 4.0616(8), 13.094(3), 9.932(2); CeYbSe3, 4.0234(5), 13.065(2), 9.885(1); PrYbSe3, 4.0152(5), 13.053(2), 9.868(1); NdYbSe3, 4.0015(6), 13.047(2), 9.859(1); SmYbSe3, 3.9780(9), 13.040(3), 9.860(2). The structure is composed of layers of YbQ6 (Q=S or Se) octahedra that alternate with layers of LnQ8 bicapped trigonal prisms along the b-axis. Because there are no Q-Q bonds in the structure the formal oxidation states of Ln/Yb/Q are 3+/3+/2−. Magnetic susceptibility measurements indicate that CeYbSe3 and SmYbSe3 are Curie-Weiss paramagnets over the temperature range 5-300 K.  相似文献   

4.
Ternary lanthanide rhenium oxides Ln3ReO7 (Ln=Sm, Eu, Ho) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=Sm, Eu; C2221 for Ln=Ho). The magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Sm3ReO7 shows an antiferromagnetic transition at 1.9 K. The Eu3ReO7 indicates a magnetic anomaly at 12 K. On the other hand, the results of the specific heat measurements indicate that both Sm3ReO7 and Eu3ReO7 undergo a structure transition at 270 and 350 K, respectively. The Ho3ReO7 is paramagnetic down to 1.8 K.  相似文献   

5.
The reactions of HgE (E=S, Se) with HgX2 and MX4 (M=Zr, Hf; X=Cl, Br) in evacuated glass ampoules lead to a series of isotypic compounds of the general formula Hg3E2[MX6] in the form of colorless (X=Cl) and light-yellow (X=Br) air-sensitive crystals. The crystal structures of Hg3S2[ZrCl6] (I), Hg3S2[HfCl6] (II), Hg3Se2[ZrCl6] (III), Hg3Se2[HfCl6] (IV), Hg3S2[ZrBr6] (V), and Hg3Se2[ZrBr6] (VI) were refined based on single-crystal data. All compounds crystallize in the monoclinic space group P21/a with the lattice parameters a=662.18(2) pm, b=734.97(3) pm, c=1290.83(5) pm, β=91.755(2)° for (I) and and a=701.97(3) pm, b=756.79(3) pm, c=1350.99(6) pm, β=92.164(3)° for (VI). The structures are built of (Hg3E2)2+ layers stacked perpendicular to the c-axis. The polycationic layers consist of two-dimensionally linked 12-membered Hg6E6 rings in the chair conformation with linear coordinated Hg and trigonal pyramidal coordinated chalcogen atoms. Almost regular octahedral [MX6]2− ions are embedded between the layers. This arrangement is closely related to the structure of Hg3S2[SiF6], which represents a higher symmetric congener. The structure relation is discussed using the supergroup-subgroup relation between space groups.  相似文献   

6.
Structures and magnetic properties of double perovskite-type oxides Eu2LnTaO6 (Ln=Eu, Dy-Lu) were investigated. These compounds adopt a distorted double perovskite structure with space group P21/n. Magnetic susceptibility, specific heat, and 151Eu Mössbauer spectrum measurements show that the Eu2+ ions at the 12-coordinate sites of the perovskite structure are antiferromagnetically ordered at ∼4 K, and that Ln3+ ions at the 6-coordinate site are in the paramagnetic state down to 1.8 K.  相似文献   

7.
The ternary selenides LnCuSe2 (Ln=La, Ce, Pr, Nd, Sm) have been synthesized by the reaction at 1173 K of Ln, Cu, and Se in a KBr or KI flux. The compounds, which are isostructural with LaCuS2, crystallize with four formula units in the space group P21/c of the monoclinic system. The structure may be thought of as consisting of layers of CuSe4 tetrahedra separated by double layers of LnSe7 monocapped trigonal prisms along the a-axis. Cell constants (Å or deg) at 153 K are: LaCuSe2, 6.8142(5), 7.5817(6), 7.2052(6), 97.573(1)°; CeCuSe2, 6.7630(5), 7.5311(6), 7.1650(6), 97.392(1)°; PrCuSe2, 6.740(1), 7.481(1), 7.141(1), 97.374(2)°; NdCuSe2, 6.7149(6), 7.4452(7), 7.1192(6), 97.310(1)°; SmCuSe2, 6.6655(6), 7.3825(7), 7.0724(6), 97.115(1)°. There are no Se-Se bonds in the structure of LnCuSe2; the formal oxidation states of Ln/Cu/Se are 3+/1+/2−.  相似文献   

8.
Single crystals of Ln5Ru2O12 (Ln=Pr, Nd, Sm-Tb) were grown out of either NaOH or KOH fluxes in sealed silver tubes. The crystals of all the phases were observed to be twinned as confirmed by TEM studies. The series crystallize in the C2/m monoclinic system with lattice parameters, a=12.4049(4)-12.7621(6) Å, b=5.8414(2)-5.9488(3) Å, c=7.3489(2)-7.6424(4) Å, β=107.425(3)-107.432(2)° and Z=2. The crystal structure is isotypic with the defect/disorder model of Ln5Re2O12 (Ln = Y, Gd) and consists of one dimensional edge shared RuO6 octahedral chains separated by a two dimensional LnOx polyhedral framework. Magnetic measurements indicate paramagnetic and antiferromagnetic behavior for Ln=Nd, Sm-Gd and Ln=Tb, respectively.  相似文献   

9.
Ternary rare earth antimonates Ln3SbO7 (Ln=rare earths) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C2221 for Ln=Nd-Lu), in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Ln3SbO7 (Ln=Nd, Gd-Ho) compounds show an antiferromagnetic transition at 2.2-3.2 K. Sm3SbO7 and Eu3SbO7 show van Vleck paramagnetism. Measurements of the specific heat down to 0.4 K for Gd3SbO7 and the analysis of the magnetic specific heat indicate that the antiferromagnetic ordering of the 8-coordinated Gd ions occur at 2.6 K, and the 7-coordinated Gd ions order at a furthermore low temperature.  相似文献   

10.
Crystal structures and magnetic properties of the ternary oxides Ln3NbO7 (Ln=La, Pr, Nd, Sm-Lu) are reported. Their powder X-ray diffraction measurements and Rietveld analyzes show that they have the fluorite-related structures with space group Pnma (Ln=La, Pr, Nd), C2221 (Ln=Sm-Tb), or Fm-3m (Ln=Dy-Lu). Magnetic susceptibility measurements were carried out from 1.8 to 400 K. The Ln3NbO7 compounds for Ln=Pr, Gd, Dy-Yb show Curie-Weiss paramagnetic behavior, and Sm3NbO7 and Eu3NbO7 show van Vleck paramagnetism. On the other hand, two magnetic anomalies were observed for both Nd3NbO7 (0.6 and 2.7 K) and Tb3NbO7 (2.0 and 3.2 K). From the results of specific heat measurements, it was found that these anomalies are due to the antiferromagnetic ordering of Ln ions in two different crystallographic sites (the 8-coordinated and 7-coordinated sites).  相似文献   

11.
Ternary iridium oxides Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) were prepared and their crystal structures, magnetic and thermal properties were investigated. Powder X-ray diffractions (XRDs) were measured for all samples and neutron diffraction (ND) measurements were performed for Pr3IrO7. All the profiles were refined with space group Cmcm (No. 63). The lattice parameters for Pr3IrO7 refined by using ND data are a=10.9782(13) Å, b=7.4389(9) Å, and c=7.5361(9) Å. From specific heat and differential thermal analysis (DTA) measurements, Ln3IrO7 (Ln=Pr, Nd, Sm, and Eu) show thermal anomalies at 261, 342, 420, and 485 K, respectively. The results of powder high-temperature XRD and ND measurements indicate that these anomalies are due to the structural phase transition. Magnetic susceptibilities of these compounds were measured in the temperature range between 1.8 and 400 K. Nd3IrO7 shows an antiferromagnetic transition at 2.6 K. A specific heat anomaly has also been observed at the same temperature. For Ln3IrO7 (Ln=Pr, Sm, and Eu), no magnetic anomalies have been found in the experimental temperature range.  相似文献   

12.
The compound Cs2Hg2USe5 was obtained from the solid-state reaction of U, HgSe, Cs2Se3, Se, and CsI at 1123 K. This material crystallizes in a new structure type in space group P2/n of the monoclinic system with a cell of dimensions a=10.276(6) Å, b=4.299(2) Å, c=15.432(9) Å, β=101.857(6) Å, and V=667.2(6) Å3. The structure contains layers separated by Cs atoms. Within the layers are distorted HgSe4 tetrahedra and regular USe6 octahedra. In the temperature range of 25-300 K Cs2Hg2USe5 displays Curie-Weiss paramagnetism with μeff=3.71(2) μB. The compound exhibits semiconducting behavior in the [010] direction; the conductivity at 298 K is 3×10−3 S/cm. Formal oxidation states of Cs/Hg/U/Se may be assigned as +1/+2/+4/− 2, respectively.  相似文献   

13.
Seven new quaternary metal sulfides, KY2CuS4, KNd2CuS4, KSm2CuS4, KTb2CuS4, KHo2CuS4, K2Dy4Cu4S9, and K2Ho4Cu4S9, were prepared by the reactive flux method. All crystallographic data were collected at 153 K. The isostructural compounds KLn2CuS4 (Ln=Y, Nd, Sm, Tb, Ho) crystallize in space group Cmcm of the orthorhombic system with four formula units in cells of dimensions (Ln, a, b, c (Å)): Y, 3.9475(9), 13.345(3), 13.668(3); Nd, 4.0577(3), 13.7442(10), 13.9265(10); Sm, 4.0218(4), 13.6074(14), 13.8264(14); Tb, 3.9679(5), 13.4243(17), 13.7102(18); Ho, 3.9378(3), 13.3330(11), 13.6487(11). The corresponding R1 indices for the refined structures are 0.0197, 0.0153, 0.0158, 0.0181, and 0.0178. The isostructural compounds K2Dy4Cu4S9 and K2Ho4Cu4S9 crystallize in space group C2/m of the monoclinic system with two formula units in cells of dimensions (Ln, a, b, c (Å), β (°)): Dy, 13.7061(13), 3.9482(4), 15.8111(15), 109.723(1); Ho, 13.6760(14), 3.9360(4), 15.7950 (16), 109.666(2). The corresponding R1 indices are 0.0312 and 0.0207. Both structure types are closely related three-dimensional tunnel structures. The tunnels are filled with bicapped trigonal-prismatically coordinated K atoms. Their anionic frameworks are built from LnS6 octahedra and CuS4 tetrahedra. KLn2CuS4 contains 1[CuS35−] chains of vertex-sharing tetrahedra and K2Ln4Cu4S9 contains 1[Cu4S812−] chains of tetrahedra. K2Ho4Cu4S9 shows Curie-Weiss paramagnetic behavior between 5 and 300 K, and has an effective magnetic moment of 10.71 μB for Ho3+ at 293 K. Optical band gaps of 2.17 eV for KSm2CuS4 and 2.43 eV for K2Ho4Cu4S9 were deduced from diffuse reflectance spectra. A first-principles calculation of the density of states and the frequency-dependent optical conductivity was performed on KSm2CuS4. The calculated band gap of 2.1 eV is in good agreement with the experimental value.  相似文献   

14.
Single crystals of double-perovskite type lanthanide magnesium iridium oxides, Ln2MgIrO6 (Ln=Pr, Nd, Sm-Gd) have been grown in a molten potassium hydroxide flux. The compounds crystallize in a distorted 1:1 rock salt lattice, space group P21/n, consisting of corner shared MO6 (M=Mg2+ and Ir4+) octahedra, where the rare earth cations occupy the eight-fold coordination sites formed by the corner shared octahedra. Pr2MgIrO6, Nd2MgIrO6, Sm2MgIrO6, and Eu2MgIrO6 order antiferromagnetically around 10-15 K.  相似文献   

15.
Dark red single crystals of PrLnYb2S6 (Ln=Pr/Yb, Tb, Dy) have been synthesized through the reactions of elemental rare earth metals and S using a Sb2S3 flux at 1000 °C. These isotypic compounds adopt the F-Ln2S3 three-dimensional open-channel structure type. Eight-coordinate Pr3+ ions sit in the channels that are constructed from three different edge-shared double chains running down the b-axis that contain Yb(1)S6 octahedra, Yb(2)S6 octahedra, and LnS7 monocapped trigonal prisms. Each double chain connects to four other neighbors by sharing vertices and edges. Considerable disordering in Ln positions was observed in single X-ray diffraction experiments only in the case of Pr/Yb. Least-squares refinements gave rise to the formulas of Pr1.34Yb2.66S6, of PrTbYb2S6, and PrDyYb2S6, which are confirmed by the elemental analysis and magnetic susceptibility measurements. Pr1.34Yb2.66S6, PrTbYb2S6, and PrDyYb2S6 are paramagnetic down to 2 K, without any indications of long-range magnetic ordering. The optical transitions for Pr1.34Yb2.66S6, PrTbYb2S6, and PrDyYb2S6 are at approximately 1.6 eV. Crystallographic data are listed as an example for PrTbYb2S6: monoclinic, space group P21/m, a=10.9496(10) Å, b=3.9429(4) Å, c=11.2206(10) Å, β=108.525(2)°, V=459.33(7) Å3, Z=2.  相似文献   

16.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

17.
Crystal structures of synthetic phosphates Ce0.33Zr2(PO4)3, Eu0.33Zr2(PO4)3 and Yb0.33Zr2(PO4)3 have been refined by Rietveld method using powder diffraction data. Unit cell parameters: a=8.7419 (4), c=23.128 (2) Å; a=8.7659 (1), c=22.822 (1) Å; a=8.8078 (4), c=22.485 (3) Å, respectively; Z=6. Values of final R-factors in isotropic approximation: Rwp=4.00, Rwp=3.33, Rwp=4.12%, respectively. New space group Pc has been established for the compounds with general formula Ln0.33Zr2(PO4)3, where Ln=Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Y. It has been confirmed that the synthetic phosphates with general formula Ln0.33Zr2(PO4)3 belong to the NZP (sodium zirconium phosphate) structure type.  相似文献   

18.
The effect of substitution of the anion Te by Se in non-stoichiometric Cr5Te8 has been investigated with respect to its crystal structure, magnetic properties, and electronic structure. The compounds Cr(1+x)Q2 (Q=Te, Se; Te:Se=7:1; (1+x)=1.234(6), 1.264(6), 1.300(7)) were synthesized at elevated temperatures followed by quenching the samples to room temperature. The crystal structures have been refined with X-ray powder diffraction data with the Rietveld method in the trigonal space group with lattice parameters a=3.8651(1)-3.8831(1) Å and c=5.9917(2)-6.0528(2) Å. The structure is related to the NiAs structure with full and deficient metal layers stacking alternatively along the c-axis. The irreversibility in the field-cooled/zero-field-cooled magnetization suggests that the substitution effects of one Te by one Se is strong enough to cause cluster-glass behavior, from ferromagnetic Cr5Te8 to cluster-glass Cr(1+x)Q2. Non-saturation magnetizations at 5.5 T and the magnetic relaxation results further support the existence of cluster-glass behavior. Accompanying SPR-KKR (spin-polarized relativistic Korringa-Kohn-Rostoker) band structure calculations strongly support the observation that the Cr(1) sites are preferentially occupied by Cr atoms and predict that these compounds are metallic. Results for the spin-resolved DOS and magnetic moments on each crystallographic sites are presented.  相似文献   

19.
The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI3 and graphite, heated at 900-950 °C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln12(C2)3I17-type compounds (C 2/c, a=19.610(1) and 19.574(4) Å, b=12.406(2) and 12.393(3) Å, c=19.062(5) and 19.003(5) Å, β=90.45(3)° and 90.41(3)°, for Pr12(C2)3I17 and Nd12(C2)3I17, respectively). All compounds contain infinite zigzag chains of C2-centered metal atom octahedra condensed by edge-sharing into the [tcc] sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd12(C2)3I17 sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln3+)12(C26-)3(I)17(e) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd12(C2)3I17, Gd12(C2)3I17 and Dy12(C2)3I17 indicate the coexistence of competing magnetic interactions leading to spin freezing at Tf=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at TN=25 and 29 K, respectively. For Dy12(C2)3I17, a metamagnetic transition is observed at a critical magnetic field H≈25 kOe.  相似文献   

20.
δ-Ln2−xLuxS3 (Ln=Ce, Pr, Nd; x=0.67-0.71) compounds have been synthesized through the reaction of elemental rare-earth metals and S using a Sb2S3 flux at 1000 °C. These compounds are isotypic with CeTmS3, which has a complex three-dimensional structure. It includes four larger Ln3+ sites in eight- and nine-coordinate environments, two disordered seven-coordinate Ln3+/Lu3+ positions, and two six-coordinate Lu3+ ions. The structure is constructed from one-dimensional chains of LnSn (n=6-9) polyhedra that extend along the b-axis. These polyhedra share faces or edges with two neighbors within the chains, while in the [ac] plane they share edges and corners with other chains. Least square refinements gave rise to the formulas of δ-Ce1.30Lu0.70S3, δ-Pr1.29Lu0.71S3 and δ-Nd1.33Lu0.67S3, which are consistent with the EDX analysis and magnetic susceptibility data. δ-Ln2−xLuxS3 (Ln=Ce, Pr, Nd; x=0.67-0.71) show no evidence of magnetic ordering down to 5 K. Optical properties measurements show that the band gaps for δ-Ce1.30Lu0.70S3, δ-Pr1.29Lu0.71S3, and δ-Nd1.33Lu0.67S3 are 1.25, 1.38, and 1.50 eV, respectively. Crystallographic data: δ-Ce1.30Lu0.70S3, monoclinic, space group P21/m, a=11.0186(7), b=3.9796(3), c=21.6562(15) Å, β=101.6860(10), V=929.93(11), Z=8; δ-Pr1.29Lu0.71S3, monoclinic, space group P21/m, a=10.9623(10), b=3.9497(4), c=21.5165(19) Å, β=101.579(2), V=912.66(15), Z=8; δ-Nd1.33Lu0.67S3, monoclinic, space group P21/m, a=10.9553(7), b=3.9419(3), c=21.4920(15) Å, β=101.5080(10), V=909.47(11), Z=8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号