首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a luminescent phenomenon in Dy3+-doped SrSiO3 long-lasting phosphor. After irradiation by a 254-nm UV lamp for 5 min, the Dy3+-doped SrSiO3 phosphor emits white light-emitting long-lasting phosphorescence for more than 1 h even after the irradiation source has been removed. Photoluminescence, long-lasting phosphorescence and thermoluminescence (TL) spectra are used to explain this phenomenon. Photoluminescence spectra reveal that the white light-emitting long-lasting phosphorescence originated from the two mixtures of Dy3+ characteristic luminescence, the 480-nm blue emission (4F9/26H15/2) and the 572-nm yellow emission (4F9/26H13/2). TL spectra shows that the introduction of Dy3+ ions into the SrSiO3 host produces a highly dense trapping level at 377 K (0.59 eV), which is responsible for the long-lasting phosphorescence at room temperature. A possible mechanism of the long-lasting phosphorescence based on the experimental results is proposed. It is considered that the long-lasting phosphorescence is due to persistent energy transfer from the electron traps to the Dy3+ ions, which creates the persistent luminescence of Dy3+ to produce the white light-emitting long-lasting phosphorescence.  相似文献   

2.
SrZnO2:Eu3+ has been synthesized by solid-state reaction and its photoluminescence in ultraviolet (UV)-vacuum ultraviolet (VUV) range was investigated. The broad bands around 254 nm are assigned to CT band of Eu3+-O2−. With the increasing of Eu3+ concentration, Eu3+ could occupy different sites, which leads to the broadening of CT band. A sharp band is observed in the region of 110-130 nm, which is related to the host absorption. The phosphors emit red luminescence centered at about 616 nm due to Eu3+5D07F2 both under 254 and 147 nm, but none of Eu2+ blue emission can be observed.  相似文献   

3.
Host lattice Ba3Si5O13−δNδ oxonitridosilicates have been synthesized by the traditional solid state reaction method. The lattice structure is based on layers of vertex-linked SiO4 tetrahedrons and Ba2+ ions, where each Ba2+ ion is coordinated by eight oxygen atoms forming distorted square antiprisms. Under an excitation wavelength of 365 nm, Ba3Si5O13−δNδ:Eu2+ and Ba3Si5O13−δNδ:Eu2+,Ce3+ show broad emission bands from about 400-620 nm, with maxima at about 480 nm and half-peak width of around 130 nm. The emission intensity is strongly enhanced by co-doping Ce3+ ions into the Ba3Si5O13−δNδ:Eu2+ phosphor, which could be explained by energy transfer. The excitation band from the near UV to the blue light region confirms the possibility that Ba3Si5O13−δNδ:Eu2+, Ce3+ could be used as a phosphor for white LEDs.  相似文献   

4.
A novel red emitting phosphor, Eu3+-doped Ca2SnO4, was prepared by the solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the formation of Ca2SnO4: Eu3+. Field-emission scanning electron-microscopy (FE-SEM) observation indicated a narrow size-distribution of about 500 nm for the particles with spherical shape. Photoluminescence measurements indicated that the phosphor exhibits bright red emission at about 615 nm under UV excitation. The excellent luminescence properties make it possible as a good candidate for plasma display panels (PDP) application. Splitting of the 5D0-7FJ transitions of Ca2SnO4: Eu3+ suggests that the Eu3+ ions occupied two nonequivalent sites in the crystallite. The luminescence lifetime measurement showed a bi-exponential decay, providing other evidence for the existence of two different environments for Eu3+ ions.  相似文献   

5.
CaIn2O4:Dy3+/Pr3+/Tb3+ blue-white/green/green phosphors were prepared by the Pechini sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), diffuse reflectance, photoluminescence (PL) and cathodoluminescence (CL) spectra as well as lifetimes were utilized to characterize the samples. The XRD results reveal that the samples begin to crystallize at 800 °C and pure CaIn2O4 phase can be obtained after annealing at 900 °C. The FE-SEM images indicate that the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ samples consist of spherical grains with size around 200-400 nm. Under the excitation of ultraviolet light and low-voltage electron beams (1-5 kV), the CaIn2O4:Dy3+, CaIn2O4:Pr3+ and CaIn2O4:Tb3+ phosphors show the characteristic emissions of Dy3+ (4F9/2-6H15/2 and 4F9/2-6H13/2 transitions, blue-white), Pr3+ (3P0-3H4, 1D2-3H4 and 3P1-3H5 transitions, green) and Tb3+ (5D4-7F6,5,4,3 transitions, green), respectively. All the luminescence is resulted from an efficient energy transfer from the CaIn2O4 host lattice to the doped Dy3+, Pr3+ and Tb3+ ions, and the corresponding luminescence mechanisms have been proposed.  相似文献   

6.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

7.
Eu3+-doped Gd3PO7 nanospheres with an average diameter of ∼300 nm and a narrow size distribution have been prepared by a facile combustion method and structurally characterized by X-ray diffraction and field emission scanning electron microscopy. The luminescent properties were systemically studied by the measurement of excitation/emission spectra, and emission spectra under different temperatures, as well as by photostability. The strong red-emission intensity peaking at 614 nm originates the 5D07F2 transition and is observed under 254-nm irradiation, indicating that Eu3+ ions in Gd3PO7 mainly occupied non-centrosymmetry sites. The CIE1931 XY chromaticity coordinates of Gd3PO7:Eu3+ nanospheres are (x=0.654, y=0.345) in the red area, which is near the National Television Standard Committee standard chromaticity coordinates for red. Thus, Gd3PO7:Eu3+ nanospheres may be potential red-emitting phosphors for PDP and Xe-based mercury-free lamps.  相似文献   

8.
Rare earth ions (Ce3+, Tb3+)-doped LaMgAl11O19 phosphor films were deposited on quartz glass substrates by Pechini sol-gel and dip coating method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), field emission scanning electronic microscopy (FESEM), photoluminescence (PL) spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the magnetoplumbite structure LaMgAl11O19 phase can be obtained at 1200 °C on quartz glass substrates. This was further verified by the results of FT-IR and TG-DTA. AFM study showed that uniform films have an average grain size of 150 nm and a root mean square (RMS) roughness of 4 nm. The thickness of the films characterized by FESEM is about 340 nm. LaMgAl11O19:Ce3+ film showed the parity and spin allowed 5d-4f band emission of Ce3+ with a maximum at 350 nm. Ce3+, Tb3+-codoped LaMgAl11O19 films showed the band emission of Ce3+ and characteristic emission of Tb3+, namely, 5D3,4-7FJ (J=6, 5, 4, 3) due to an efficient energy transfer from Ce3+ to Tb3+ in the host.  相似文献   

9.
A novel blue-emitting phosphor, LiSrPO4:Eu2+, was prepared by the solid-state reaction and X-ray powder diffraction (XRD) analysis confirmed the formation of LiSrPO4:Eu2+. Photoluminescence (PL) results showed that the phosphor can be efficiently excited by UV-visible light from 250 to 440 nm, and exhibited bright blue emission. The effects of the doped-Eu2+ concentration in LiSrPO4:Eu2+ on the PL were investigated in detail. The results showed that the relative PL intensity increases with Eu2+-concentration increasing until a maximum intensity is reached, and then it decreases due to concentration quenching and a red-shift appears, which are explained satisfactorily with the luminescent theory. Upon excited with 396 nm light, the present synthesized phosphor has higher emission intensity than that from the commercial blue phosphor, BaMgAl10O17:Eu2+. Bright blue light-emitting diodes were fabricated by the combination of the synthesized LiSrPO4:Eu2+ with ∼397 nm emitting InGaN-based chips.  相似文献   

10.
The microstructure and phase stability of nanocrystalline mixed oxide LuxCe1−xO2−y (x=0-1) are described. Nano-sized (3-4 nm) oxide particles were prepared by the reverse microemulsion method. Morphological and structural changes upon heat treatment in an oxidizing atmosphere were studied by transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman and Yb3+ emission spectroscopy, the latter ion being present as an impurity in the Lu2O3 starting material. Up to 950 °C, the samples were single phase, with structure changing smoothly with Lu content from fluorite type (F) to bixbyite type (C). For the samples heated at 1100 °C phase separation into coexisting F- and C-type structures was observed for 0.35<x<0.7. It was also found that addition of Lu strongly hinders the crystallite growth of ceria during heat treatment at 800 and 950 °C.  相似文献   

11.
A novel red light-emitting material, Ca3Al2O6:Eu3+, which is the first example found in the Ca3Al2O6 host, was prepared by calcination of a layered double hydroxide precursor at 1350 °C. The precursor, [Ca2.9−xAl2Eux(OH)9.8](NO3)2+x·2.5H2O, was prepared by coprecipitation of metal nitrates with sodium hydroxide. The material is a loose powder composed of irregular particles formed from aggregation of particles of a few nanometers, as shown in scanning electron microscope (SEM) images. It was found that the photoluminescence intensity reached the maximum when the calcination temperature was 1350 °C and the concentration of Eu3+ was 1.0%. The material emits bright red emission at 614 nm under a radiation of λ=250 nm.  相似文献   

12.
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 °C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by 5D0-7F2 transition of Eu3+ (618 nm, red). The PL and CL intensities of Eu3+ increase with increasing the annealing temperature and the number of coating cycles. The optimum concentration for Eu3+ was determined to be 5 mol% of Gd3+ in GdVO4 host.  相似文献   

13.
Tm3+/Yb3+ codoped rod-like YF3 nanocrystals were synthesized through a facile hydrothermal method. After annealing in an argon atmosphere, the nanocrystals emitted bright blue and intense ultraviolet (UV) light under a 980-nm continuous wave diode laser excitation. Up-conversion emissions centered at ∼291 nm (1I6 → 3H6), ∼347 nm (1I6 → 3F4), ∼362 nm (1D2 → 3H6), ∼452 nm (1D2 → 3F4), ∼476 nm (1G4 → 3H6), ∼642 nm (1G4 → 3F4), and ∼805 nm (3H4 → 3H6) were recorded using a fluorescence spectrophotometer. Especially, enhanced UV emissions were studied by changing Yb3+/Tm3+ doping concentrations, the annealing temperatures, and the excitation power densities. A possible mechanism, energy transfer-cross relaxation-energy transfer (ET-CR-ET), was proposed based on a simple rate-equation model to elucidate the process of the enhanced UV emissions.  相似文献   

14.
SrF2:Eu3+ nanospheres with homogeneous diameter have been synthesized by a microemulsion-mediated hydrothermal method for the first time, in which quaternary microemulsion of CTAB/water/cyclohexane/n-pentanol was used. The possible reaction mechanism and the luminescent properties of SrF2:Eu3+ nanospheres were also investigated in this paper. The morphology and grain sizes of final products were characterized by field emission scanning electron microscopy and transmission electron microscopy, indicating that most of the products were nanospheres with an average diameter of ∼50 nm. Room-temperature emission spectra, recorded under 394-nm excitation, showed that the transition of 5D0 → 7F1 emission be dominating in SrF2:Eu3+ nanospheres. From the dependence of the luminescence intensity on the concentration of Eu3+ ions, the optimal dopant concentration is 2 mol%.  相似文献   

15.
Red emitting phosphors of CaTiO3:Pr3+ nanoparticles with size ranging from 6 to 95 nm have been prepared by a coprecipitation technique and structurally characterized by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. The fluorescence and phosphorescence of CaTiO3:Pr3+ nanoparticles as a function of annealing temperature are investigated. It is found that fluorescence intensities monotonously increase with increasing temperature. However, a maximum in phosphorescence with the increase of annealing temperature occurs for the sample prepared at 700 °C. Based on the measurement of fluorescence emission, fluorescence excitation and reflectance spectra as well as time decay patterns of fluorescence and phosphorescence, it is demonstrated that the dependence of fluorescence and phosphorescence on annealing temperature originates from the decrease of surface defects with the increase of temperature.  相似文献   

16.
A new efficient blue phosphor, Eu2+ activated SrZnP2O7, has been synthesized at 1000 °C under reduced atmosphere and the crystal structure and photoluminescence properties have been investigated. The crystal structure of SrZnP2O7 was obtained via Rietveld refinement of powder X-ray diffraction (XRD) pattern. It was found that SrZnP2O7 crystallizes in space group of P21/n (no. 14), Z=4, and the unit cell dimensions are: a=5.30906(2) Å, b=8.21392(3) Å, c=12.73595(5) Å, β=90.1573(3)°, and V=555.390(3) Å3. Under ultraviolet excitation (200-400 nm), efficient Eu2+ emission peaked at 420 nm was observed, of which the luminescent efficiency at the optimal concentration of Eu2+ (4 mol%) was estimated to be 96% as that of BaMgAl10O17:Eu2+. Hence, the SrZnP2O7:Eu2+ exhibit great potential as a phosphor in different applications, such as ultraviolet light emitting diode and photo-therapy lamps.  相似文献   

17.
SrAl2O4:Eu2+, Dy3+ powders were synthesized by sol–gel–combustion process using metal nitrates as the source of metal ions and citric acid as a chelating agent of metal ions. The amounts of citric acid in mole were two times those of the metal ions. By tracing the formation process of the sol–gel, it is found that decreasing the amount of NO3 in the solution is necessary for the formation of transparent sol and gel, and the dropping of ethanol into the precursor solution can decrease the amount of NO3 in the solution. By combusting citrate sol at 600 °C, followed by heating the resultant combustion ash at 1,100–1,300 °C in a weak reductive atmosphere containing active carbon, SrAl2O4:Eu2+, Dy3+ phosphors can prepared. X-ray diffraction, Thermogravimetry–differential thermal analysis, scanning electron microscopy and fluorescence spectrophotometer were used to investigate the formation process and luminescent properties of the as-synthesized SrAl2O4:Eu2+, Dy3+. The results reveal that the SrAl2O4 crystallizes completely when the combustion ash was sintered at 1,200–1,300 °C. The excitation and emission spectra indicate that excitation broadband mainly lies in a visible range and the phosphors emit strong light at 510 nm under the excitation of 348 nm. The afterglow of phosphors lasts for over 10 h when the excited source is cut off.  相似文献   

18.
Sb3+-doped Sr3(PO4)2 crystals has been synthesized using phosphoric acid, strontium hydroxide and antimony powder as the raw materials through a hydrothermal reaction method. The crystallinity and the microstructure were investigated using X-ray diffraction and scanning electron microscopy. The photoluminescent property was investigated using luminescent spectrometer. Phase pure Sr3(PO4)2 crystal was obtained and it has a shape of hexagonal rod. It showed the emission and excitation peaks at 396, 250, and 215 nm, respectively, indicating that the emission is attributed to 3P1-1S0 transition and the excitation is attributed to 1S0-3P1 and 1S0-1P1 transition. It was also observed that the intensity of photoluminescence is thermally stable up to 673 K.  相似文献   

19.
The new oxyborate phosphors, Na3La9O3(BO3)8:Eu3+ (NLBO:Eu) and Na3La9O3(BO3)8:Tb3+ (NLBO:Tb) were prepared by solid-state reactions. The photoluminescence characteristics under UV excitation were investigated. The dominated emission of Eu3+ corresponding to the electric dipole transition 5D07F2 is located at 613 nm and bright green luminescence of NLBO:Tb attributed to the transition 5D47F5 is centered at 544 nm. The concentration dependence of the emission intensity showed that the optimum doping concentration of Eu and Tb is 30% and 10%, respectively.  相似文献   

20.
Photoluminescence (PL) of Eu3+ was studied in SrIn2O4 host lattice. A complete solid solubility of Eu3+ has been found in the series SrIn2−xEuxO4 [x=0-2.0]. The phase formation at a relatively low temperature and in a very short duration was achieved by combustion synthesis (CS). Concentration quenching of luminescence has been observed in SrIn2−xEuxO4 [x=0.1-2.0] and the critical concentration for maximum emission was found to be with x=0.3. In order to find the role of crystallite size on the PL properties of SrIn2O4:Eu3+, the results obtained with phosphors synthesized by solid state reaction (SSR) and CS methods were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号