首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine oxidation by HO(.) was studied at a high level of ab initio theory in both gas phase and aqueous solution. Potential energy surface scans in the gas phase performed for the model system methanethiol+HO(.) indicate that the reactants can form two intermediate states: a sulfur-oxygen adduct and a hydrogen bound reactant complex. However these states appear to play a minor role in the reaction mechanism as long as they are fast dissociating states. Thus the main reaction channel predicted at the QCISD(T)/6-311+G(2df,2pd) level of theory is the direct hydrogen atom abstraction. The reaction mechanism is not perturbed by solvation which was found to induce only small variations in the Gibbs free energy of different reactant configurations. The larger size reactant system cysteine+HO* was treated by the integrated molecular orbital+molecular orbital (IMOMO) hybrid method mixing the QCISD(T)/6-311+G(2df,2pd) and the UMP2/6-311+G(d,p) levels of theory. The calculated potential energy, enthalpy, and Gibbs free energy barriers are slightly different from those of methanethiol. The method gave a rate constant for cysteine oxidation in aqueous solution, k=2.4 x 10(9) mol(-1) dm(3) s(-1), which is in good agreement with the experimental rate constant. Further analysis showed that the reaction is not very sensitive to hydrogen bonding and electrical polarity of the molecular environment.  相似文献   

2.
The UV photodissociation (<5 eV) of diiodomethane (CH(2)I(2)) is investigated by spin-orbit ab initio calculations. The experimentally observed photodissociation channels in the gas and condensed phases are clearly assigned by multi-state second-order multiconfigurational perturbation theory in conjunction with spin-orbit interaction through complete active space-state interaction potential energy curves. The calculated results indicate that the fast dissociations of the first two singlet states of CH(2)I(2) and CH(2)I--I lead to geminate-radical products, CH(2)I (.)+I((2)P(3/2)) or CH(2)I (.)+ I*((2)P(1/2)). The recombination process from CH(2)I--I to CH(2)I(2) is explained by an isomerization process and a secondary photodissociation reaction of CH(2)I--I. Finally, the study reveals that spin-orbits effects are significant in the quantitative analysis of the electronic spectrum of the CH(2)I--I species.  相似文献   

3.
4.
N,C-chelate organoboron compounds are widely employed as photoresponsive and optoelectronic materials due to their efficient photochromic reactivity. It was found in experiments that two diphenyl-substituted organoboron compounds, namely B(ppy)Ph2 (ppy=2-phenylpyridyl) and B(iba)Ph2 (iba=N-isopropylbenzylideneamine), show distinct photochemical reactivity. B(ppy)Ph2 is inert on irradiation, whereas B(iba)Ph2 undergoes photoinduced transformations, yielding BN-cyclohepta-1,3,5-triene via a borirane intermediate. In this work, the complete active space self-consistent field and its second-order perturbation (CASPT2//CASSCF) methods were used to investigate the photoinduced reaction mechanisms of B(ppy)Ph2 and B(iba)Ph2. The calculations showed that the two compounds isomerize to borirane in the same way by passing a transition state in the S1 state and a conical intersection between the S1 and S0 states. The energy barriers in the S1 state of 0.54 and 0.26 eV for B(ppy)Ph2 and B(iba)Ph2, respectively, were explained by analyzing the charge distributions of minima in S0 and S1 states. The results provide helpful insights into the excited-state dynamics of organoboron compounds, which could assist in rational design of boron-based photoresponsive materials.  相似文献   

5.
The kinetics of the oxidation of pyridine, 3‐chloropyridine, 3‐cyanopyridine, 3‐methoxypyridine and 3‐methylpyridine mediated by SO4 < M ‐> radicals are studied by flash photolysis of peroxodisulphate, S2O82?, at pH 2.5 and 9. The absolute rate constants for the reactions of both, the basic and acid forms of the pyridines, are determined and discussed in terms of the Hammett correlation. The monosubstituted pyridines react about 10 times faster with sulphate radicals than their protonated forms, the pyridine ions. The organic intermediates are identified as the corresponding hydroxypyridine radical adducts and their absorption spectra compared with those estimated employing the time‐dependent density functional theory with explicit account for bulk solvent effects. A reaction mechanism which accounts for the observed intermediates and the pyridinols formed as products is proposed.  相似文献   

6.
In Nature, the family of copper monooxygenases comprised of peptidylglycine α‐hydroxylating monooxygenase (PHM), dopamine β‐monooxygenase (DβM), and tyramine β‐monooxygenase (TβM) is known to perform dioxygen‐dependent hydroxylation of aliphatic C? H bonds by using two uncoupled metal sites. In spite of many investigations, including biochemical, chemical, and computational, details of the C? H bond oxygenation mechanism remain elusive. Herein we report an investigation of the mechanism of hydroxylation by PHM by using hybrid quantum/classical potentials (i.e., QM/MM). Although previous investigations using hybrid QM/MM techniques were restricted to geometry optimizations, we have carried out ab initio molecular dynamics simulations in order to include the intrinsic flexibility of the active sites in the modeling protocol. The major finding of this study is an extremely fast rebound step after the initial hydrogen‐abstraction step promoted by the cupric–superoxide adduct. The hydrogen‐abstraction/rebound sequence leads to the formation of an alkyl hydroperoxide intermediate. Long‐range electron transfer from the remote copper site subsequently triggers its reduction to the hydroxylated substrate. We finally show two reactivity consequences inherent in the new mechanistic proposal, the investigation of which would provide a means to check its validity by experimental means.  相似文献   

7.
The biological dehalogenation of fluoroacetate carried out by fluoroacetate dehalogenase is discussed by using quantum mechanical/molecular mechanical (QM/MM) calculations for a whole‐enzyme model of 10 800 atoms. Substrate fluoroacetate is anchored by a hydrogen‐bonding network with water molecules and the surrounding amino acid residues of Arg105, Arg108, His149, Trp150, and Tyr212 in the active site in a similar way to haloalkane dehalogenase. Asp104 is likely to act as a nucleophile to attack the α‐carbon of fluoroacetate, resulting in the formation of an ester intermediate, which is subsequently hydrolyzed by the nucleophilic attack of a water molecule to the carbonyl carbon atom. The cleavage of the strong C? F bond is greatly facilitated by the hydrogen‐bonding interactions between the leaving fluorine atom and the three amino acid residues of His149, Trp150, and Tyr212. The hydrolysis of the ester intermediate is initiated by a proton transfer from the water molecule to His271 and by the simultaneous nucleophilic attack of the water molecule. The transition state and produced tetrahedral intermediate are stabilized by Asp128 and the oxyanion hole composed of Phe34 and Arg105.  相似文献   

8.
We have studied the keto-enol interconversion of acetone to understand the mechanism of tautomerism relevant to numerous organic and biochemical processes. Applying the ab initio metadynamics method, we simulated the keto-enol isomerism both in the gas phase and in the presence of water. For the gas-phase intramolecular mechanism we show that no other hydrogen-transfer reactions can compete with the simple keto-enol tautomerism. We obtain an intermolecular mechanism and remarkable participation of water when acetone is solvated by neutral water. The simulations reveal that C deprotonation is the kinetic bottleneck of the keto-enol transformation, in agreement with experimental observations. The most interesting finding is the formation of short H-bonded chains of water molecules that provide the route for proton transfer from the carbon to the oxygen atom of acetone. The mechanistic picture that emerged from the present study involves proton migration and emphasizes the importance of active solvent participation in tautomeric interconversion.  相似文献   

9.
We studied the thermal intramolecular and radical rearrangement of azulene to naphthalene by employing a novel metadynamics method based on Car-Parrinello molecular dynamics. We demonstrate that relatively short simulations can provide us with several possible reaction mechanisms for the rearrangement. We show that different choices of the collective coordinates can steer the reaction along different pathways, thus offering the possibility of choosing the most probable mechanism. We consider herein three intramolecular mechanisms and two radical pathways. We found the norcaradiene pathway to be the preferable intramolecular mechanism, whereas the spiran mechanism is the favored radical route. We obtained high activation energies for all the intramolecular pathways (81.5-98.6 kcal mol(-1)), whereas the radical routes have activation energies of 24-39 kcal mol(-1). The calculations have also resulted in elementary steps and intermediates not yet considered. A few attractive features of the metadynamics method in studying chemical reactions are pointed out.  相似文献   

10.
《Chemphyschem》2003,4(8):843-847
The atmospheric reaction (1) OH + O3→HO2 + O2 was investigated theoretically by using MP2, QCISD, QCISD(T), and CCSD(T) methods with various basis sets. At the highest level of theory, namely, QCISD, the reaction is direct, with only one transition state between reactants and products. However, at the MP2 level, the reaction proceeds through a two‐step mechanism and shows two transition states, TS1 and TS2 , separated by an intermediate, Int . The different methodologies employed in this paper consistently predict the barrier height of reaction (1) to be within the range 2.16–5.11 kcal mol?1, somewhat higher than the experimental value of 2.0 kcal mol?1.  相似文献   

11.
12.
13.
Ethanol dehydration to ethene is mechanistically decoupled from the production of higher hydrocarbons due to complete surface coverage by adsorbed ethanol and diethyl ether (DEE). The production of C3+ hydrocarbons was found to be unaffected by water present in the reaction mixture. Three routes for the production of C3+ hydrocarbons are identified: the dimerization of ethene to butene and two routes involving two different types of surface species categorized as aliphatic and aromatic. Evidence for the different types of species involved in the production of higher hydrocarbons is obtained via isotopic labeling, continuous flow and transient experiments complemented by UV/Vis characterization of the catalyst and ab initio microkinetic modeling.  相似文献   

14.
15.
We report herein a comprehensive theoretical study of the thermodynamics and kinetics of molecular hydrogen activation by frustrated Lewis pairs (FLPs). A series of intermolecularly combined boranes (Lewis acids) and phosphines (Lewis bases), with experimentally established different reactivities towards H2, have been subjected to DFT and (SCS‐)MP2 calculations, and analyzed in terms of their structural properties, the energetics of association of the FLPs, and the kinetics of their interactions with H2 and hydrogenation to the ion‐pair products. The analysis included the following steps: 1) assessment of the ability/inability of the Lewis species to preorganize into FLPs with an optimum arrangement of the acid and base sites for preconditioning the reaction with H2, 2) comprehension of the different thermodynamics of hydrogenation of the selected FLPs by comparing the Gibbs energies of the overall reactions, and 3) estimation of the mechanism of the activation of H2 by identifying the reaction steps and the associated kinetic barriers. The results of our studies correlate well with experimental findings and have clarified the reasons for the observed different reactivities of the investigated systems, ranging from reversible or nonreversible activation to no reaction with H2. The derived predictions could assist the future design of Lewis acid–base systems with desired properties and applicability as metal‐free hydrogenation catalysts.  相似文献   

16.
17.
An efficient catalytic one‐step conversion of benzene to phenol was achieved recently by selective photooxidation under mild conditions with 2,3‐dichloro‐5,6‐dicyano‐p‐benzoquinone (DDQ) as the photocatalyst. Herein, high‐level electronic structure calculations in the gas phase and in acetonitrile solution are reported to explore the underlying mechanism. The initially populated 1ππ* state of DDQ can relax efficiently through a nearby dark 1nπ* doorway state to the 3ππ* state of DDQ, which is found to be the precursor state involved in the initial intermolecular electron transfer from benzene to DDQ. The subsequent triplet‐state reaction between DDQ radical anions, benzene radical cations, and water is computed to be facile. The formed DDQH and benzene‐OH radicals can undergo T1→S0 intersystem crossing and concomitant proton‐coupled electron transfer (PCET) to generate the products DDQH2 and phenol. Two of the four considered nonadiabatic pathways involve an orientation‐dependent triplet PCET process, followed by intersystem crossing to the ground state (S0). The other two first undergo a nonadiabatic T1→S0 transition to produce a zwitterionic S0 complex, followed by a barrierless proton transfer. The present theoretical study identifies novel types of nonadiabatic PCET processes and provides detailed mechanistic insight into DDQ‐catalyzed photooxidation.  相似文献   

18.
《Chemphyschem》2003,4(4):366-372
The atmospheric reaction NH2+O3→H2NO+O2 has been investigated theoretically by using MP2, QCISD, QCISD(T), CCSD(T), CASSCF, and CASPT2 methods with various basis sets. At the MP2 level of theory, the hypersurface of the potential energy (HPES) shows a two step reaction mechanism. Therefore, the mechanism proceeds along two transition states (TS1 and TS2), separated by an intermediate designated as Int. However, when the single‐reference higher correlated QCISD and the multiconfigurational CASSCF methodologies have been employed, the minimum structure Int and TS2 are not found on the HPES, which thus confirms a direct reaction mechanism. Single‐reference high correlated and multiconfigurational methods consistently predict the barrier height of the reaction to be within the range of 3.9 to 6.6 kcal mol?1, which is somewhat higher than the experimental value. 1 The calculated reaction enthalpy is ?67.7 kcal mol?1.  相似文献   

19.
Born–Oppenheimer molecular dynamics (BOMD) and periodic density functional theory (DFT) calculations have been applied for describing the mechanism of formation of lithium fluoride (LiF) nanotubes with cubic, hexagonal, octagonal, decagonal, dodecagonal, and tetradecagonal cross-sections. It has been shown that high energy structures, such as nanowires, nanorings, nanosheets, and nanopolyhedra are transient species for the formation of stable nanotubes. Unprecedented (LiF)n clusters (n≤12) were also identified, some of them lying less than 10 kcal mol−[1] above their respective global minima. Such findings indicate that stochastic synthetic techniques, such as laser ablation and chemical vapor deposition, should be combined with a template-driven procedure in order to generate the nanotubes with adequate efficiency. Apart from the stepwise growth of LiF units, the formation of nanotubes was also studied by rolling up a planar square sheet monolayer, which could be hypothetically produced from the exfoliation of the FCC crystal structure. It was shown that both pathways could lead to the formation of alkali halide nanotubes, a still unprecedented set of one-dimensional materials.  相似文献   

20.
High-level ab initio electronic structure calculations have been carried out with respect to the intermolecular hydrogen-transfer reaction HCOOH+.OH-->HCOO.+H(2)O and the intramolecular hydrogen-transfer reaction .OOCH2OH-->HOOCH(2)O.. In both cases we found that the hydrogen atom transfer can take place via two different transition structures. The lowest energy transition structure involves a proton transfer coupled to an electron transfer from the ROH species to the radical, whereas the higher energy transition structure corresponds to the conventional radical hydrogen atom abstraction. An analysis of the atomic spin population, computed within the framework of the topological theory of atoms in molecules, suggests that the triplet repulsion between the unpaired electrons located on the oxygen atoms that undergo hydrogen exchange must be much higher in the transition structure for the radical hydrogen abstraction than that for the proton-coupled electron-transfer mechanism. It is suggested that, in the gas phase, hydrogen atom transfer from the OH group to oxygen-centered radicals occurs by the proton-coupled electron-transfer mechanism when this pathway is accessible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号