首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The immobilisation of enzymes on an electrode surface, in such a manner that they retain both substrate specificity and high levels of catalytic activity, is of great importance in bioelectrochemistry. This includes areas such as the development of enzyme-catalysed fuel cell electrodes, biosensors and other biotechnological applications. We have investigated the catalytic activity of hexahistidine tagged variants of lactate dehydrogenase (EC 1.1.1.27) from the thermophile Bacillus stearothermophilus both in solution and when immobilised on poly(aniline)-poly(acrylate) (PANi-PAA) or poly(aniline)-poly(vinyl sulphonate) (PANi-PVS) composite films. Both the C- and N-terminally tagged enzymes are readily immobilised on the modified electrode and catalyse the conversion of lactate and NAD+ to pyruvate and NADH. The NADH that is generated can be readily oxidised at the PANi-modified electrode surface.In solution, the activity of the C-tagged enzyme (LDH-CHis) was some 30% less that of the wild-type under comparable conditions, whereas the N-tagged enzyme was found to possess essentially the same activity as the wild-type. However, when the enzymes were immobilised on PANi-PAA and PANi-PVS the C-tagged enzyme films showed a higher NADH-dependent current than the wild-type LDH whilst the N-tagged enzyme had the highest of the three. In addition, the C-tagged enzyme film appeared more stable than the wild-type LDH-PANi film. A novel immobilisation chemistry of the enzyme is proposed to account for these observations.  相似文献   

2.
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination.  相似文献   

3.
Immobilisation of enzymes is important for applications such as biosensors or biofuel cells. A poly(histidine) tag had been introduced on the C terminus of a lactate dehydrogenase enzyme. This mutant enzyme was then immobilised onto poly(aniline) (PANi)-poly(anion) composite films, PANi-poly(vinylsulfonate) (PVS) or PANi-poly(acrylate) (PAA). The NADH produced by the immobilised enzyme in the presence of beta-nicotinamide adenine dinucleotide (NAD(+)) and lactate is oxidised at the poly(aniline)-coated electrode at 0.05 to 0.1 V vs. saturated calomel electrode (SCE) at 35 degrees C.  相似文献   

4.
Binding isotherms of poly(styrenesulfonate) with hydrogen and selected alkali ions have been determined by dialysis equilibrium and dye spectroscopy, employing Pb2+, Mg2+, and Ca2+ as the competing divalent ions. The observed degrees of counterion binding, Θz, defined as the number of bound counterfoils of valence z per poly ion site-group, agree quite well with those predicted by Manning's two variable theory. The binding preference follows the order Cs+ > Rb+ > K+ > Na+ > H+ >Li+, indicating that the binding process is of a territorial nature. Independently performed light scattering measurements show that a plot of the radius of gyration, >S z>, against the actual polyion charge gives a sigmoidal curve. This result is taken to indicate that (1) a polyion is, in general, not completely neutralized in the Θ-state and that (2) a polyion may be not fully stretched when the polyion charge density is largest.  相似文献   

5.
In this work, glyoxal (Glox) - crosslinked gelatin (Gel) films have been loaded with aniline molecules, followed by their in-situ oxidative polymerization to yield Gel/poly(Ani) composite films. The films, so prepared, have been characterized by FTIR, XRD, TGA and AFM analysis. The water absorption of these films has been studied in the physiological fluid of pH 7.4 at 37°C.The dynamic water uptake data has been interpreted by various kinetic models such as power function model and Schott kinetic model. The various diffusion coefficients have also been evaluated.  相似文献   

6.
semi-Interpenetrating polymer network (sIPN) composite membranes consisting of poly(styrenesuflonic) acid (PSSA) and poly(vinylidene fluoride) (PVDF) have been prepared and evaluated as proton exchange membrane electrolytes in direct methanol fuel cells (DMFCs). The membranes fabricated were evaluated in terms of their proton conductivity, methanol permeability, and their performance characteristics in direct methanol fuel cells (DMFCs). PSSA-PVDF membranes demonstrated decreased methanol crossover during operation of direct methanol fuel cells compared to state-of-art Nafion®-H membranes, yielding improved efficiency. PSSA-PVDF membranes have been demonstrated to operate efficiently in 1 in. × 1 in. and 2 in. × 2 in. direct methanol fuel cells. Fuel cells operating with PSSA-PVDF membranes were observed to have dramatically lower crossover rates compared to Nafion® 117 systems. Greater than 95% reduction in crossover was observed in some cases. These properties of PSSA-PVDF membranes resulted in improved fuel performance and fuel cell efficiencies for direct methanol fuel cells. It was also observed that the PSSA-PVDF membranes behave quite differently compared with Nafion®-based systems in terms water management characteristics at the cathode. The best performance with the new membranes was observed with very low oxygen or air flow rates at the cathode which is in contrast to Nafion®-based systems, which generally require higher flow rates due to excessive water accumulation at the cathode, resulting in flooding.  相似文献   

7.
The polaron might play an important role in the process of charge migration through duplex DNA stack. In the present work, we investigate properties of hole polarons in DNA molecules containing identical base pairs, such as poly(G)-poly(C) and poly(A)-poly(T), An extended tight-binding model (extended Su-Schrieffer-Heeger model), which involves the effect of an electric field in the direction of DNA stack, will be introduced. The transfer integral and electron-phonon coupling parameters in this model are obtained according to ab initio calculation for different base pair dimers. Calculations reveal that the polaron in poly(A)-poly(T) has a wider shape and a higher mobility under a specific electric field than that in poly(G)-poly(C) DNA stack.  相似文献   

8.
A Pb2+ ion selective membrane electrode based on poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) Zr(IV) monothiophosphate composite cation exchange material was fabricated using solution casting method. The effect of membrane composition on the proton exchange capacity was investigated by using varying amounts of electroactive material. The membrane with 250 mg of electroactive material and 10 µL of plasticiser exhibited higher proton conductivity. The optimised membrane composition was used for the fabrication of ion selective membrane electrode which exhibited typical Nernstian response towards Pb2+ ions in the concentration range 20.70 gL?1–20.7 µgL?1 (1 × 10–1–1 × 10–7 mol L?1) with a sub-Nernstian slope of 27.429 mV per decade change in Pb2+ ion concentration. The response time of the electrode under study for Pb2+ ions was found to be 11 s and the electrode can be used for 120 days without any considerable divergence in response potential. It can also be successfully used in the pH range from 3.0 to 6.5. It was found selective for Pb2+ ions in the presence of various monovalent, divalent and trivalent interfering metal ions. It was also employed as an indicator electrode in the potentiometric titration of Pb2+ ions using ethylenediaminetetraacetic acid, disodium salt, as a titrant.  相似文献   

9.
A detailed kinetic study is provided for the oxidation of ascorbate at poly(aniline)-poly(styrene sulfonate) coated microelectrodes. Flat films with a low degree of polymer spillover and a thickness much lower than the microelectrode radius were produced by controlled potentiodynamic electrodeposition. The currents for ascorbate oxidation are found to be independent of the polymer thickness, indicating that the reaction occurs at the outer surface of the polymer film. At low ascorbate concentrations, below around 40 mM, the currents are found to be mass transport limited. At higher ascorbate concentrations the currents became kinetically limited. The experimental data for measurements at a range of potentials are fitted to a consistent kinetic model and the results summarized in a case diagram. The results obtained for the poly(aniline)-(polystyrene sulfonate) coated microelectrode are compared to those for a poly(aniline)-poly(vinyl sulfonate) coated microelectrode and to the results of an earlier study of the reaction at poly(aniline)-poly(vinyl sulfonate) coated rotating disc electrodes. For poly(aniline)-poly(styrene sulfonate) the oxidation of ascorbate is found to proceed by one electron reaction whereas for poly(aniline)-poly(vinyl sulfonate) the reaction is found to be a two electron oxidation.  相似文献   

10.
Latexes of 100 nm diameter were synthesized by emulsifier-free copolymerization of styrene, sodium styrenesulfonate, and 1–5 wt% divinylbenzene using persulfate initiator at 91°C. A shot growth method was used to incorporate a high density of sulfonate groups. Coefficients of variation of particle size were 0.04–0.08 without resort to seed growth polymerization. Redox initiation at 40–50°C produced larger, more polydisperse, and less colloidally stable crosslinked latexes. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
In this study, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) zirconium(IV) monothiophosphate composite cation exchanger was prepared by sol–gel precipitation method. The presence of sulphur in the cation exchanger enhances affinity towards the heavy metal ions which can improve the selectivity of the material. The selectivity studies showed that the material is selective towards Pb(II) ions. To characterise the material, several physicochemical properties were also studied which includes X-ray, scanning electron microscopy and transmission electron microscopy studies. The ion-exchange behaviour of this cation exchanger was studied by using some of the selected properties like ion-exhange capacity for various metal ions, elution, effect of eluent concentration, thermal effect on ion-exchange capacity (IEC). The results of IEC and physicochemical properties revealed that the material is nanocomposite, crystalline, chemically, mechanically and thermally stable. The analytical ability of this cation exchanger was demonstrated in binary separation of Pb(II) ions from a mixture of other metal ions. The recovery is qualitative and the separations are reproducible.  相似文献   

12.
Poly(butylene terephthalate)-poly(ethylene oxide)-poly(dimethyl siloxane)-poly(ethylene oxide) block copolymers, (PBT-PEO-PDMS-PEO)m, are synthesized by polycondensation (PC) of dimethylterephtalate (DMT), 1,4-butanediol (BDO) and PEO-PDMS-PEO. The soft block has been incorporated from 10 to 70 wt-%; the total molecular weight (MW) of the block-copolymers amounts to 16000 - 20000 g/mol. One major problem of polyether-PBT thermoplastic elastomers is their poor thermo-oxidative stability. Due to the excellent heat stability of PDMS, the resistance of this new thermoplastic elastomer against thermo-oxidative degradation has been increased 80 %! From differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA) in the PEO-PDMS-PEO based COPEs, three phases can be distinguished. Besides the crystalline PBT phase, an amorphous mixed phase of PBT and PEO and an almost pure PDMS phase have been found. Due to the high concentration of the mixed PBT-PEO phase, the low temperature modulus and the glass transition temperature, Tg, are not dominated by the pure PDMS phase (Tg = −114°C). Depending on the amount of PBT and PEO present, the main glass transition lies in the range of −50°C to 50°C.  相似文献   

13.
14.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

15.
The heterogeneous structure of poly(vinyl alcohol)-poly(sodium acrylate) composite hydrogels (PVA-PAA gels), prepared by repeatedly freezing and thawing mixed aqueous solutions of PVA and PAA, has been studied using pulsed NMR. The free induction decay (FID) signals of the transverse magnetization for the PVA-PAA gels were measured by both Carr-Purcell-Meiboom-Gill and solid-echo pulse sequences. The FID signal was decomposed into two or three decaying signals with various spin-spin relaxation times, based upon differences in the molecular mobility that reflected structural heterogeneity. The structural heterogeneity of the PVA-PAA gel is quite different from that of PVA gel free of PAA. We have made observations on “crosslinked” domains in the PVA-PAA gels. They are formed by PVA solid chains, probably phase-separated in the freezing-thawing process. The formation of crosslinked domains is influenced by the number of freezing-thawing cycles. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
Polymers that contain crown ether moieties at the side chain and are capable of forming rather tough film were synthesized by the polymer reaction of poly(vinyl alcohol) with formyl derivatives of aliphatic crown ethers such as 12-crown-4, 15-crown-5, and 18-crown-6. In the passive transport of alkali metal picrates across the poly(crown ether) membranes the permeation, particularly of alkali metals which tend to form intramolecular sandwich-type complexes with the crown ether rings, was retarded, compared with a poly(vinyl alcohol) membrane. The cation selectivities in the permeation of poly(crown ether) membranes differed significantly from those of poly(vinyl alcohol).  相似文献   

17.
A method for the preparation of highly conductive and stable organic-inorganic nanocomposite polyelectrolyte membranes with controlled spacing between inorganic segment and covalently bound sulfonic acid functional groups has been established. These polyelectrolyte membranes were prepared by condensation polymerization of the silica precursor (tetraethylorthosilicate) in dimethylacetamide in the presence of poly(ethylene glycol) (PEG) of desired molecular weight, and sulfonated poly(styrene-co-maleic anhydride) was attached to the polymeric backbone by hydrogen bonding. Molecular weight of PEG has been systematically changed to control the nanostructure of the developed polymer matrix for studying the effects of molecular structure on the thermal as well as conductive properties. These polyelectrolyte membranes were extensively characterized by studying their thermo-gravimetric analysis (TGA), ion-exchange capacity (IEC), water content, conductivity, methanol permeability, and current-voltage polarization curves under direct methanol fuel cell (DMFC) operating conditions as a function of silica content and molecular weight of PEG used for membrane preparation. Moreover, from these studies and estimation of selectivity parameter among all synthesized membranes, 30% silica content and 400 Da molecular weight of PEG resulted in the best nanocomposite polyelectrolyte membranes, which exhibited performance comparable to that of the Nafion 117 membrane for DMFC applications.  相似文献   

18.
Partially sulfonated poly(etheretherketone) (SPEEK) samples were prepared by modification of corresponding poly(etheretherketone) (PEEK) with concentrated sulfuric acid. Membranes cast from these materials were evaluated as polymer electrolytes for direct methanol fuel cells (DMFCs). SPEEK membranes were characterized by 1H NMR, FT-IR and TGA. The transverse proton conductivities increased from 4.1 to 9.3 × 10−3 S/cm with the increase of the degree of sulfonation (DS) from 0.59 to 0.93. These values were comparable with that of Nafion 117 membrane (1.0 × 10−2 S/cm) measured under the same condition. Nearly one order magnitude difference between transverse conductivity and longitudinal conductivity was found. The methanol permeabilities of the SPEEK membranes were all lower than that of Nafion 117 membrane. The effects of temperature and methanol concentration on the methanol permeability were also studied. In addition, the selectivities of the SPEEK membranes for protons and methanol were all higher than that of Nafion 117 membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号