首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose and study numerically an all-normal-dispersion Ytterbium-doped figure-eight fiber laser scheme for generation of high-energy pulses. The monotonous pulse stretching that takes place in the fiber under the combined actions of normal dispersion and nonlinear Kerr effect is compensated by the amplitude modulation effect of a bandpass filter inserted in the ring section of the laser. The Nonlinear Optical Loop Mirror (NOLM) also contributes to shorten the pulses. An output coupler with a large output coupling ratio is inserted at the amplifier output in order to extract the maximal energy from the laser. A short segment of Ytterbium-doped fiber compensates for the losses. Stable single-pulse operation is predicted over a wide range of values of the laser parameters. If the laser parameters (ring and NOLM length, dispersion, filter bandwidth, output coupling ratio) are optimized, pulses with several tens of nanojoules energy are readily obtained, with picosecond duration and a large positive chirp which is linear near the peak. If small-signal gain is large enough, the use of very large output coupling ratios opens the way to pulse energies close to 100 nJ and, after dechirping outside the laser, to durations of ˜50 fs and peak powers of 1 MW.  相似文献   

2.
Lim H  Ilday FO  Wise FW 《Optics letters》2003,28(8):660-662
We report a mode-locked ytterbium fiber laser that generates femtosecond pulses with energies as large as 2.2 nJ. This represents a 20-fold improvement in pulse energy compared with that of previously reported femtosecond Yb fiber lasers. The laser produces pulses as short as 52 fs, which are to our knowledge the shortest pulses to date from a Yb fiber laser. The laser is diode pumped by a wavelength-division multiplexing coupler, which leads to excellent stability.  相似文献   

3.
张大鹏  胡明列  谢辰  柴路  王清月 《物理学报》2012,61(4):44206-044206
为了探索大模场面积光子晶体光纤锁模激光器在全正色散锁模域内的耗散孤子锁模机理, 以获得更大的单脉冲能量和更高的峰值功率, 本文搭建了以掺镱大模场面积光子晶体光纤作为增益介质的耗散孤子锁模激光器. 激光器使用环形腔结构, 利用非线性偏振旋转以及滤光片提供的耗散作用实现了稳定的锁模运转. 实验中, 从激光器振荡级直接获得了平均功率10 W, 重复频率49.09 MHz(对应202 nJ的单脉冲能量), 脉冲宽度为1.03 ps的稳定锁模脉冲输出, 经过腔外色散补偿得到的脉冲宽度为95.5 fs.  相似文献   

4.
Buckley JR  Clark SW  Wise FW 《Optics letters》2006,31(9):1340-1342
We demonstrate the use of a prism-grating sequence to reduce third-order dispersion inside a mode-locked Yb fiber laser. This laser generates pulses as short as 33 fs with extremely clean temporal and spectral profiles. Nanojoule pulse energies are possible.  相似文献   

5.
Li X  Liu X  Hu X  Wang L  Lu H  Wang Y  Zhao W 《Optics letters》2010,35(19):3249-3251
We report on a long-cavity passively mode-locked fiber laser in the anomalous dispersion regime. The nonlinear polarization rotation technique is employed to achieve mode locking. The output pulse from the fiber laser has a rectangular shape and a corresponding gaussian-shape spectral profile. Stable mode-locked pulses at a repetition rate of 278 kHz with single pulse energy as high as 715 nJ are obtained under equal bidirectional pumping power of 500 mW in cavity. The experimental results demonstrate that the passively mode-locked fiber laser operating in the anomalous regime can also realize a high-energy pulse, which is different from the conventional low-energy soliton pulse.  相似文献   

6.
Self-similar evolution of parabolic pulses in a laser   总被引:1,自引:0,他引:1  
Self-similar propagation of ultrashort, parabolic pulses in a laser resonator is observed theoretically and experimentally. This constitutes a new type of pulse shaping in mode-locked lasers: in contrast to the well-known static (solitonlike) and breathing (dispersion-managed soliton) pulse evolutions, asymptotic solutions to the nonlinear wave equation that governs pulse propagation in most of the laser cavity are observed. Stable self-similar pulses exist with energies much greater than can be tolerated in solitonlike pulse shaping, and this has implications for practical lasers.  相似文献   

7.
Lou JW  Currie M 《Optics letters》2005,30(4):406-408
We demonstrate a mode-locked erbium-doped fiber laser with a 1-microm InGaAs saturable absorber that produces 84-ps, 1-nJ transform-limited pulses. Measurements of the InGaAs multiple quantum well revealed a slow saturable absorber that is useful for passive mode locking. Optical fiber was added to extend the cavity and vary the repetition rate from 51 kHz to 5.4 MHz. The narrow spectral width of the laser output (<0.04 nm) permits amplification to 0.2 microJ/pulse with minimal pulse broadening. Pulse energies as large as 1.7 microJ can be achieved with pulse widths of <330 ps. Average powers of 0.5 W at megahertz repetition rates are demonstrated.  相似文献   

8.
Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz.  相似文献   

9.
We demonstrate the potential of a high-gain Yb-fiber amplifier system to provide ultrashort pulses with high energies. 100 μJ pulses generated at a repetition rate of 32 kHz exhibit nearly diffraction limited output (M2≈1.7) at a 1060 nm center wavelength. Using chirped pulse amplification, temporally streched laser pulses from a femtosecond oscillator could be compressed after amplification to subpicosecond pulse duration. The achievable intensities are high enough to create plasmas which can efficiently convert laser light to the extreme ultraviolet radiation. In a multimode Yb-doped fiber amplifier we obtained average powers of up to 22 W and single pulse energies up to 130 μJ.  相似文献   

10.
We report on high-energy ultrashort pulse generation from a passively mode-locked ytterbium-doped large-mode-area photonic crystal fiber oscillator operating in the anomalous dispersion regime. In the single-pulse regime, the laser directly generates 880 mW of average power of sub-500 fs pulses at a repetition rate of 53.33 MHz, corresponding to a pulse energy of 16.5 nJ. Stable and self-starting operation is obtained by adapting the spot size at the saturable absorber mirror to the pulse evolution in the low-nonlinearity fiber. The approach presented demonstrates the scaling potential of fiber based short pulse oscillators towards the microJ-level.  相似文献   

11.
时雷  马挺  吴浩煜  孙青  马金栋  路桥  毛庆和 《物理学报》2016,65(8):84203-084203
以不同滤波器带宽下获得的全正色散光纤激光器耗散孤子作为啁啾脉冲放大(CPA)系统的种子脉冲, 研究了光栅对和光纤展宽器CPA系统输出脉冲的可压缩性. 结果表明, 对于大能量耗散孤子种子脉冲, 当CPA系统采用正色散光纤展宽器时, 光纤群速色散与自相位调制之间的相互作用不仅可抑制耗散孤子脉冲光谱调制的影响, 还可使脉冲在光纤展宽器中自相似演化, 从而可提高CPA输出脉冲的可压缩性. 通过优化光纤展宽器长度, 对于耗散孤子种子源, 采用光纤展宽器的CPA系统输出脉冲可压缩性与主脉冲所占脉冲总能量之比均优于采用光栅对展宽器时的情况.  相似文献   

12.
Femtosecond fiber lasers with pulse energies above 10 nJ   总被引:3,自引:0,他引:3  
A series of experiments aimed at determining the maximum pulse energy that can be produced by a femtosecond fiber laser is reported. Exploiting modes of pulse propagation that avoid wave breaking in a Yb fiber laser allows pulse energies up to 14 nJ to be achieved. The pulses can be dechirped to sub-100-fs duration to produce peak powers that reach 100 kW. The limitations to the maximum pulse energy are discussed.  相似文献   

13.
Jun CS  Choi SY  Rotermund F  Kim BY  Yeom DI 《Optics letters》2012,37(11):1862-1864
We report >13 MHz/mW pump power efficiency in increasing the repetition rate of passive harmonic mode-locking by engineering the soliton pulse energy in Er fiber lasers incorporating carbon nanotube saturable absorber. Stable pulses with a ~5 GHz repetition rate and 40 dB of super-mode suppression are demonstrated with only ~400 mW pump power in a single-clad fiber laser.  相似文献   

14.
Ilday FO  Buckley JR  Lim H  Wise FW  Clark WG 《Optics letters》2003,28(15):1365-1367
We report the generation of 6-nJ chirped pulses from a mode-locked Yb fiber laser at 1.03 micrometre. A linear anomalous-dispersion segment suppresses wave-breaking effects of solitonlike pulse shaping at high energies. The dechirped pulse duration is 50 fs, and the energy is 5 nJ. This laser produces twice the pulse energy and average power, and approximately five times the peak power, of the previous best mode-locked fiber laser. It is to our knowledge the first fiber laser that directly offers performance similar to that of solid-state lasers such as Ti:sapphire.  相似文献   

15.
The development of a passively Q-switched Nd:YAG laser is described in quite some experimental detail involving 3 pump diode arrays (70 W, 300 W, 600 W). Emphasis is set on the influence of pump beam profile and optimum fiber diameter on achievable pulse energies in the chosen case of fiber-coupling for the pump radiation (adjustable parameters: initial transmission, mirror reflectivity and resonator length; this work having been preceded by numerical simulations not covered in this paper). The coupling optics plays a major role on basis of variable fiber-lens distance and focal length in the formation of single or even multiple pulses. Finally, a monolithic demonstrator is presented which could be employed for applications like the induction of chemical reactions in general, i.e. ignition, for instance, in more detail. Stable ns-operation with emitted pulse energies up to 15 mJ could be achieved.  相似文献   

16.
Stable pulse-compressed acousto-optic Q-switched fiber laser   总被引:1,自引:0,他引:1  
Zhao H  Lou Q  Zhou J  Zhang F  Dong J  Wei Y  Wang Z 《Optics letters》2007,32(19):2774-2776
A novel acousto-optic switch operation by a simple laser-diode pumped acousto-optic, Q-switched, ytterbium-doped, double-clad fiber laser is reported. Stable compressed Q-switched sub-40 ns pulses with a beam quality factor (M(2)=2) are achieved at the repetition rate of 1-50 kHz. Q-switched pulses of ~20 microJ pulse energy and 35 ns pulse width are obtained at the repetition rate of 50 kHz. Finally, a reasonable explanation of the novel Q-switched operation is presented.  相似文献   

17.
A passively self-starting mode-locked fiber ring laser is demonstrated using a highly concentrated Erbium doped fiber (EDF) with a saturable absorber. The effect of EDF length on the performance of the laser is investigated. Stable stretched pulses are obtained at wavelength region of 1560nm with a repetition rate ranging from 10.1 to 12.1 MHz and a pulse width stretching from 0.52 to 0.75 ps as the EDF length is reduced from 4.5 to 1.5 m. The repetition rate goes higher as the cavity length decreases when a shorter EDF is used but the pulse width reduces as the EDF length increases since the total group velocity dispersion (GVD) in the cavity is close to zero. The article is published in the original.  相似文献   

18.
We propose a mode-locked figure-eight fiber laser by utilizing an attenuation-imbalanced nonlinear optical loop mirror (AI-NOLM) for the first time. Stable self-starting passively mode-locked pulses as short as 296 fs are obtained. We have also confirmed that the pulse width of the laser can be varied by changing the amount of attenuation in the AI-NOLM.  相似文献   

19.
氧化石墨烯被动调Q掺铒光纤激光器   总被引:2,自引:1,他引:1       下载免费PDF全文
报道了基于氧化石墨烯的被动调Q掺铒光纤激光器。激光器采用环形腔结构,调Q器件为自制的氧化石墨烯可饱和吸收镜。泵浦功率在81~505 mW范围内时,得到了重复频率68~124 kHz的稳定的调Q脉冲输出,脉宽为0.47~1.60 s。由于泵浦功率限制,激光器最大输出功率为10 mW, 相应单脉冲能量为80.6 nJ。此种基于氧化石墨烯可饱和吸收体的被动调Q光纤激光器体积小、成本低廉、结构简单、稳定性高、光束质量高,具有广阔的应用前景。  相似文献   

20.
Ultrafast thin disk laser oscillators achieve the highest average output powers and pulse energies of any mode-locked laser oscillator technology. The thin disk concept avoids thermal problems occurring in conventional high-power rod or slab lasers and enables high-power TEM00 operation with broadband gain materials. Stable and self-starting passive pulse formation is achieved with semiconductor saturable absorber mirrors (SESAMs). The key components of ultrafast thin disk lasers, such as gain material, SESAM, and dispersive cavity mirrors, are all used in reflection. This is an advantage for the generation of ultrashort pulses with excellent temporal, spectral, and spatial properties because the pulses are not affected by large nonlinearities in the oscillator. Output powers close to 100 W and pulse energies above 10 μJ are directly obtained without any additional amplification, which makes these lasers interesting for a growing number of industrial and scientific applications such as material processing or driving experiments in high-field science. Ultrafast thin disk lasers are based on a power-scalable concept, and substantially higher power levels appear feasible. However, both the highest power levels and pulse energies are currently only achieved with Yb:YAG as the gain material, which limits the gain bandwidth and therefore the achievable pulse duration to 700 to 800 fs in efficient thin disk operation. Other Yb-doped gain materials exhibit a larger gain bandwidth and support shorter pulse durations. It is important to evaluate their suitability for power scaling in the thin disk laser geometry. In this paper, we review the development of ultrafast thin disk lasers with shorter pulse durations. We discuss the requirements on the gain materials and compare different Yb-doped host materials. The recently developed sesquioxide materials are particularly promising as they enabled the highest optical-to-optical efficiency (43%) and shortest pulse duration (227 fs) ever achieved with a mode-locked thin disk laser.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号