首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of a point source placed on a flat surface is calculated in the context of reduced QED3+1, and the effective charge behavior is investigated with allowance for the polarization of vacuum. Both approximate analytical and numerical methods are used in calculations. It is established that the behavior of the examined potential at short and long distances from the source does not deviate significantly from the Coulomb behavior of vacuum massless and massive fermions. Other deviations of the results obtained from the well-known standard QED3+1 and QED2+1 data are also discussed.  相似文献   

2.
Some aspects of supersymmetric gauge theories and discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possibleZ 2 global gauge anomaly in extended supersymmetricSO(10) (or spin (10)) gauge theories inD=10 dimensions containing additional Weyl fermions in a spinor representation ofSO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories areZ 2 global gauge anomalies for extended supersymmetricSP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation ofSP(2N) with an odd 2nd-order Dynkin index.  相似文献   

3.
《Nuclear Physics B》1988,298(3):586-612
We present the rules for systematically constructing all consistent four-dimensional string theories, using free world-sheet fermions which pick up arbitrary phases when parallel transported around the string. These rules are necessary and sufficient for multi-loop modular invariance. They lead to theories with general ZN (GSO-type) projections, whose merits for model-building we discuss. We classify all boundary conditions yielding massless space-time spinors. We show that, in contrast to the case of only real 2d fermions, all possible realizations of world-sheet supersymmetry are now allowed. This opens the way for the construction of a new class of supersymmetric string models.  相似文献   

4.
We prove the perturbative renormalizability of Euclidean QED4 using flow equations, i.e. with the aid of the Wilson renormalization group adapted to perturbation theory. As compared to 4 4 the additional difficulty to overcome is that the regularization violates gauge invariance. We prove that there exists a class of renormalization conditions such that the renormalized Green functions satisfy the QED Ward identities and such that they are infrared finite at nonexceptional momenta. We give bounds on the singular behaviour at exceptional momenta (due to the massless photon) and comment on the adaptation to the case when the fermions are also massless.Supported by the Swiss National Science Foundation and by the Ambrose Monell Foundation.  相似文献   

5.
The question recently raised by Tyburski as to whether the axial gauge can be used in two-dimensional quantum electrodynamics is examined. It is shown that even if the arguments leading to A1≠0 are accepted, the consequences is no more than the existence of an uncoupled massless field in the theory. Thus QED2 calculations based on the axial gauge do not require reconsideration.  相似文献   

6.
Using a synthesis of the functional integral and operator approaches we discuss the fermion-boson mapping and the role played by the Bose field algebra in the Hilbert space of two-dimensional gauge and anomalous gauge field theories with massive fermions. In QED2 with quartic self-interaction among massive fermions, the use of an auxiliary vector field introduces a redundant Bose field algebra that should not be considered as an element of the intrinsic algebraic structure defining the model. In anomalous chiral QED2 with massive fermions the effect of the chiral anomaly leads to the appearance in the mass operator of a spurious Bose field combination. This phase factor carries no fermion selection rule and the expected absence of Θ-vacuum in the anomalous model is displayed from the operator solution. Even in the anomalous model with massive Fermi fields, the introduction of the Wess-Zumino field replicates the theory, changing neither its algebraic content nor its physical content.  相似文献   

7.
S.M. Barr 《Nuclear Physics B》1981,192(2):523-551
We examine the cosmological consequences of new types of fermions generally present in GUTs based on unitary groups larger than SU(5) which break down to SU(5) at ultralarge energies. We find that some SU(5) singlet fermions in such theories tend to have masses small compared to 1015 GeV. If sufficiently light (or massless) such particles affect He abundance unacceptably. If heavier (but still light compared to 1015 GeV) the decays of such particles generate entropy and thus greatly suppress nB/nγ.Such theories also contain ultraheavy fermions. Their decays are shown to be a prime source of singlet fermions. It is also shown that the decays of ultraheavy fermions generate entropy which tends to suppress the contribution to nB/nγ from usual mechanisms. These decays may themselves, however, generate a baryon asymmetry.  相似文献   

8.
《Physics letters. [Part B]》1997,415(4):390-394
A representation for the phase of a chiral determinant in terms of a path integral of a local action including infinite series of massless fields is constructed. This representation is used to modify the action of chiral SU(2) fermions removing the global anomaly.  相似文献   

9.
We have constructed the first “realistic candidate” preon model with low composite scale satisfying complementarity between the Higgs and confining phases. The model is based onSU(4) metacolor and predicts four generations of ordinary quarks and leptons together with heavy neutrinos at the level of the standard gauge groupSU(3) c ×SU(2) L ×U(1) Y . There are no exotic massless fermions. The global family group isSU(2)×U(1).  相似文献   

10.
Behavior of doped fermions in Z2 gauge theories for the quantum dimer and eight-vertex models is studied. Fermions carry charge and spin degrees of freedom. In the confinement phase of the Z2 gauge theories, these internal symmetries are spontaneously broken and a superconducting or Neél state appears. On the other hand in the deconfinement-topologically ordered state, all symmetries are respected. From the view point of the quantum dimer and eight-vertex models, this result indicates interplay of the phase structure of the doped fermions and background configuration of the dimer or the eight-vertex groundstate. At the quantum phase transitions in these systems, structure of the doped fermions groundstate and also that of the background dimer or eight-vertex groundstate both change. Translational symmetry breaking induces a superconducting or antiferromagnetic state of the doped fermions.  相似文献   

11.
The method of discretized light-cone quantization (DLCQ) is applied to quantum electrodynamics in one space and one time dimension (QED2) with different initial conditions. This leads to different representations of the operators of the constants of motion. Within the fermion-antifermion approximation we perform analytically the transition to the continuum limit and show that the discrete massive and massless representations are equivalent. We compare a semiclassical calculation of the number of bound states with the results obtained in the continuum limit. Furthermore a discrete bosonized version of QED2 is discussed.  相似文献   

12.
《Physics letters. [Part B]》1988,200(3):305-311
We examine the breaking of gauge symmetries by Wilson loops in the Hosotani-Toms model by determining the background gauge field which minimises the one-loop effective potential for massless Dirac fermions. For anti-periodic fermions, all gauge groups remain unbroken. For periodic fermions, the groups G2, F4 and E8 are broken by quantum corrections due to fermions in any irreducible representation, whereas E6, E7 and the classical groups only break if the fermion representation is in the same congruency class as the adjoint.  相似文献   

13.
In the Einstein–Cartan theory of torsion-free gravity coupling to massless fermions, the four-fermion interaction is induced and its strength is a function of the gravitational and gauge couplings, as well as the Immirzi parameter. We study the dynamics of the four-fermion interaction to determine whether effective bilinear terms of massive fermion fields are generated. Calculating one-particle-irreducible two-point functions of fermion fields, we identify three different phases and two critical points for phase transitions characterized by the strength of four-fermion interaction: (1) chiral symmetric phase for massive fermions in strong coupling regime; (2) chiral symmetric broken phase for massive fermions in intermediate coupling regime; (3) chiral symmetric phase for massless fermions in weak coupling regime. We discuss the scaling-invariant region for an effective theory of massive fermions coupled to torsion-free gravity in the low-energy limit.  相似文献   

14.
We investigate the possibility of localizing various matter fields on a bent AdS4 (dS4) thick brane in AdS5. For spin 0 scalar field, we find a massless zero mode and an excited state which can be localized on the bent brane. For spin 1 vector field, there is only a massless zero mode on the bent brane. For spin 1/2 fermion field, it is shown that, in the case of no Yukawa coupling of scalar-fermion, there is no existence of localized massless zero mode for both left and right chiral fermions. In order to localize massless fermions, some kind of Yukawa coupling must be included. We study two types of Yukawa couplings as examples. Localization property of chiral fermions is related to the parameters of the brane model, the Yukawa coupling constant and the cosmological constant of the 4-dimensional space–time.  相似文献   

15.
《Nuclear Physics B》1996,475(3):579-596
We present an ansatz which enables us to construct heterotic/M-theory dual pairs in four dimensions. It is checked that this ansatz reproduces previous results and that the massless spectra of the proposed new dual pairs agree. The new dual pairs consist of M-theory compactifications on Joyce manifolds of G2 holonomy and Calabi-Yau compactifications of heterotic strings. These results are further evidence that M-theory is consistent on orbifolds. Finally, we interpret these results in terms of M-theory geometries which are K3 fibrations and heterotic geometries which are conjectured to be T3 fibrations. Even though the new dual pairs are constructed as non-freely acting orbifolds of existing dual pairs, the adiabatic argument is apparently not violated.  相似文献   

16.
The dispersion law of one-dimensional plasmons in a quasi-one-dimensional system of massless Dirac fermions has been calculated. Two model two-dimensional systems where bands of edge states filled with such Dirac fermions appear at the edge have been considered. Edge states in the first system, topological insulator, are due to topological reasons. Edge states in the second system, system of massive Dirac fermions, have Tamm origin. It has been shown that the dispersion laws of plasmons in both systems in the long-wavelength limit differ only in the definition of the parameters (velocity and localization depth of Dirac fermions). The frequency of plasmons is formally quantum (ω ∝ ? ?1/2) and, in the case of the Coulomb interaction between electrons, depends slightly on the Fermi level E F. The dependence on E F is stronger in the case of short-range interaction. The quantum features of oscillations of massless one-dimensional Dirac fermions are removed by introducing the mass of Dirac fermions at the Fermi level and their density. Correspondence to the dispersion law of classical one-dimensional plasma oscillations in a narrow stripe of “Schrödinger” electrons has been revealed.  相似文献   

17.
We present a grand unified model of the strong, electromagnetic and weak interactions based on a local SU(8)L×SU(8)R gauge theory which possesses a global U(8)L × U(8)R invariance. We break the symmetry down to the standard SU(3)C × SU(2)L × U(1) model, with the proton remaining stable and the left-handed neutrinos obliged to remain massless. A novel feature of our model is the simultaneous absence of both strong CP violations and of axions.  相似文献   

18.
《Nuclear Physics B》1996,459(3):612-627
We present a new deterministic, numerical method to solve fermion field theories. The Source Galerkin approach is based on finding solutions Z [ J] to the lattice functional equations for field theories in the presence of an external source J. Using Grassmann polynomial expansions for the generating functional Z, we calculate propagators for systems of interacting fermions. These calculations are straightforward to perform and are executed rapidly compared to Monte Carlo. The bulk of the computation involves a single matrix inversion. Because it is not based on a statistical technique, it does not have many of the difficulties often encountered when simulating fermions. Since no determinant is ever calculated, solutions to problems with dynamical fermions are handled more easily. This approach is very flexible, and can be tailored to specific problems based on convenience and computational constraints. We present simple examples to illustrate the method. More general schemes are desirable for more complicated systems.  相似文献   

19.
《Nuclear Physics B》1998,513(3):593-626
We consider the fermion mass spectrum in the strong coupling vortex phase (VXS) of a lattice fermion-scalar model with a global U(1)L × U(1)R, in two dimensions, in the context of a recently proposed two-cutoff lattice formulation. The fermion doublers are made massive by a strong Wilson-Yukawa coupling, but in contrast with the standard formulation of these type of models, in which the light fermion spectrum was found to be vector-like, we find massless fermions with chiral quantum numbers at finite lattice spacing. When the global symmetry is gauged, this model is expected to give rise to a lattice chiral gauge theory.  相似文献   

20.
We perform a comprehensive and systematic analysis of the SUSY flavor structure of generic 5D supergravity models on S 1/Z 2 with multiple Z 2-odd vector multiplets that generate multiple moduli. The SUSY flavor problem can be avoided due to contact terms in the 4D effective K?hler potential peculiar to the multi-moduli case. A?detailed phenomenological analysis is provided based on an illustrative model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号