首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Held 《物理学进展》2013,62(6):829-926
The calculation of the electronic properties of materials is an important task of solid-state theory, albeit particularly difficult if electronic correlations are strong, e.g., in transition metals, their oxides and in f-electron systems. The standard approach to material calculations, the density functional theory in its local density approximation (LDA), incorporates electronic correlations only very rudimentarily and fails if the correlations are strong. Encouraged by the success of dynamical mean field theory (DMFT) in dealing with strongly correlated model Hamiltonians, physicists from the bandstructure and the many-body communities have joined forces and developed a combined LDA + DMFT method recently. Depending on the strength of electronic correlations, this new approach yields a weakly correlated metal as in the LDA, a strongly correlated metal or a Mott insulator. This approach is widely regarded as a breakthrough for electronic structure calculations of strongly correlated materials. We review this LDA + DMFT method and also discuss alternative approaches to employ DMFT in electronic structure calculations, e.g., by replacing the LDA part with the so-called GW approximation. Different methods to solve the DMFT equations are introduced with a focus on those that are suitable for realistic calculations with many orbitals. An overview of the successful application of LDA + DMFT to a wide variety of materials, ranging from Pu and Ce, to Fe and Ni, to numerous transition metal oxides, is given.  相似文献   

2.
We address the nature of the Mott transition in the Hubbard model at half-filling using cluster dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does not change the order of the transition between the paramagnetic metal and the paramagnetic Mott insulator, which remains first order. However, the short range correlations reduce substantially the critical U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of the metallic and insulating phases near the transition point. Approaching the transition from the metallic side, we find an anomalous metallic state with very low coherence scale. The insulating state is characterized by the narrow Mott gap with pronounced peaks at the gap edge.  相似文献   

3.
Many-body Hamiltonians obtained from first principles generally include all possible non-local interactions. But in dynamical mean field theory the non-local interactions are ignored, and only the effects of the local interactions are taken into account. The truncation of the non-local interactions is a basis dependent approximation. We propose a criterion to construct an appropriate localized basis in which the truncation can be carried out. This involves finding a basis in which a functional given by the sum of the squares of the local interactions with appropriate weight factors is maximized under unitary transformations of basis. We argue that such a localized basis is suitable for the application of dynamical mean field theory for calculating material properties from first principles. We propose an algorithm which can be used for constructing the localized basis. We test our criterion on a toy model and find it satisfactory.  相似文献   

4.
A dynamical mean field theory for the study of surface diffusion constants   总被引:1,自引:0,他引:1  
We present a combined analytical and numerical approach based on the Mori projection operator formalism and Monte Carlo simulations to study surface diffusion within the lattice-gas model. In the present theory, the average jump rate and the susceptibility factor appearing are evaluated through Monte Carlo simulations, while the memory functions are approximated by the known results for a Langmuir gas model. This leads to a dynamical mean field theory (DMF) for collective diffusion, while approximate correlation effects beyond DMF are included for tracer diffusion. We apply our formalism to three very different strongly interacting systems and compare the results of the new approach with those of usual Monte Carlo simulations. We find that the combined approach works very well for collective diffusion, whereas for tracer diffusion the influence of interactions on the memory effects is more prominent.  相似文献   

5.
《Comptes Rendus Physique》2009,10(6):537-547
In this review we discuss how theoretical momentum-resolved many-body spectral functions can help understanding the physics underlying angular resolved photoemission spectra (ARPES). Special focus is set on phenomena induced by electronic Coulomb correlations. Among these effects are transfers of spectral weight, the loss of quasi-particle coherence, and the sensitivity of these phenomena on external parameters, such as temperature or pressure. For the examples of the metallic phases of VO2 and V2O3 we review results obtained within dynamical mean-field theory, and assess the limits of band-structure approaches. Our discussion emphasizes the need for true many-body techniques even for certain metallic materials. To cite this article: J.M. Tomczak et al., C. R. Physique 10 (2009).  相似文献   

6.
We investigate the competition of the Kondo and the RKKY interactions in heavy fermion systems. We solve a periodic Anderson model using extended dynamical mean field theory (EDMFT) with quantum Monte Carlo method. We monitor simultaneously the evolution of the electronic and magnetic properties. As the RKKY coupling increases the heavy fermion quasiparticle unbinds and a local moment forms. At a critical RKKY coupling there is an onset of magnetic order. Within EDMFT the two transitions occur at different points and the disappearance of the magnetism is not described by a local quantum critical point.  相似文献   

7.
Dynamical mean field theory (DMFT), combined with finite-temperature exact diagonalization, is one of the methods used to describe electronic properties of strongly correlated materials. Because of the rapid growth of the Hilbert space, the size of the finite bath used to represent the infinite lattice is severely limited. In view of the increasing interest in the effect of multi-orbital and multi-site Coulomb correlations in transition metal oxides, high-T(c) cuprates, iron-based pnictides, organic crystals, etc, it is appropriate to explore the range of temperatures and bath sizes in which exact diagonalization provides accurate results for various system properties. On the one hand, the bath must be large enough to achieve a sufficiently dense level spacing, so that useful spectral information can be derived, especially close to the Fermi level. On the other hand, for an adequate projection of the lattice Green's function onto a finite bath, the choice of the temperature is crucial. The role of these two key ingredients in exact diagonalization DMFT is discussed for a wide variety of systems in order to establish the domain of applicability of this approach. Three criteria are used to illustrate the accuracy of the results: (i) the convergence of the self-energy with the bath size, (ii) the quality of the discretization of the bath Green's function, and (iii) comparisons with complementary results obtained via continuous-time quantum Monte Carlo DMFT. The materials comprise a variety of three-orbital and five-orbital systems, as well as single-band Hubbard models for two-dimensional triangular, square and honeycomb lattices, where non-local Coulomb correlations are important. The main conclusion from these examples is that a larger number of correlated orbitals or sites requires a smaller number of bath levels. Down to temperatures of 5-10?meV (for typical bandwidths W?≈?2?eV) two bath levels per correlated impurity orbital or site are usually adequate.  相似文献   

8.
We propose an improved fast multi-orbital impurity solver for the dynamical mean field theory based on equations of motion (EOM) for Green's functions and a decoupling scheme. In this scheme the inter-orbital Coulomb interactions are treated fully self-consistently, and involve the inter-orbital fluctuations. As an example of the use of the derived multi-orbital impurity solver, the two-orbital Hubbard model is studied for various cases. Comparisons are made between numerical results obtained with our EOM scheme and those obtained with quantum Monte Carlo and numerical renormalization group methods. The comparison shows a good agreement, but also reveals a dissimilarity of the behaviors of the densities of states which is caused by inter-site inter-orbital hopping effects and on-site inter-orbital fluctuation effects, thus corroborating the assertion of the value of the EOM method for the study of multi-orbital strongly correlated systems.  相似文献   

9.
We propose a fast multi-orbital impurity solver for dynamical mean field theory (DMFT). Our DMFT solver is based on the equations of motion (EOMs) for local Green's functions and is constructed by generalizing from the single-orbital case to the multi-orbital case with the inclusion of the inter-orbital hybridizations and applying a mean field approximation to the inter-orbital Coulomb interactions. The two-orbital Hubbard model is studied using this impurity solver within a large range of parameters. The Mott metal-insulator transition and the quasiparticle peak are well described. A comparison of the EOM method with the quantum Monte Carlo method is made for the two-orbital Hubbard model and good agreement is obtained. The developed method hence holds promise as a fast DMFT impurity solver in studies of strongly correlated systems.  相似文献   

10.
In order to describe a typical strongly correlated insulator NiO at electronic level, we perform a first principles calculation for temperature effect on electronic properties of NiO using a many-body method merging local density approximation (LDA) with dynamical mean field theory, so called the LDA+DMFT scheme. Band gap and density of states (DOS) are in good agreement with available experimental data and theoretical calculations, and Ni d-eg and d-t2g components both exhibit insulating character. Calculated hybridization functions indicate that Ni d-eg states strongly hybrid with O p states at T = 58 K, 116 K, 145 K, 232 K and 464 K. In order to compare with experimental angle-resolved photoemission spectrum (ARPES), we also calculate momentum-resolved electronic spectrum function, which is established that obvious electronic excitation mainly arises from Ni d-t2g states at temperature T = 232 K, and the spectrum functions between −0.5 eV and 0.0 eV are almost symmetric about certain k points. Finally, we analyze the effect of temperature on electronic properties of NiO by carrying out LDA+DMFT calculations at T = 58 K, 116 K, 145 K, 232 K and 464 K, respectively. Results show that temperature mainly influences the valence states of spectrum function and hybridization function, in particular high-lying states close to Fermi level. Electronic excitation distributions and spectrum characters in electronic spectrum function are also discussed.  相似文献   

11.
《Physics letters. [Part B]》1988,206(3):466-472
Using reparametrization invariance as the only requirement, we show, by a series of algebraic steps, how the only reparametrization-invariant generalization of d'Alembert's operator for both open and closed bosonic strings, is in fact nilpotent and thus the BRST charge. The construction follows a proposal made many years ago by one of the authors.  相似文献   

12.
This paper presents a geometric-variational approach to continuous and discrete second-order field theories following the methodology of [Marsden, Patrick, Shkoller, Comm. Math. Phys. 199 (1998) 351–395]. Staying entirely in the Lagrangian framework and letting Y denote the configuration fiber bundle, we show that both the multisymplectic structure on J3Y as well as the Noether theorem arise from the first variation of the action function. We generalize the multisymplectic form formula derived for first-order field theories in [Marsden, Patrick, Shkoller, Comm. Math. Phys. 199 (1998) 351–395], to the case of second-order field theories, and we apply our theory to the Camassa–Holm (CH) equation in both the continuous and discrete settings. Our discretization produces a multisymplectic-momentum integrator, a generalization of the Moser–Veselov rigid body algorithm to the setting of nonlinear PDEs with second-order Lagrangians.  相似文献   

13.
Adiabatic perturbations propagate in the expanding universe like scalar massless fields in some effective Robertson–Walker space–time.  相似文献   

14.
A new calculus, based upon the multivector derivative, is developed for Lagrangian mechanics and field theory, providing streamlined and rigorous derivations of the Euler-Lagrange equations. A more general form of Noether's theorem is found which is appropriate to both discrete and continuous symmetries. This is used to find the conjugate currents of the Dirac theory, where it improves on techniques previously used for analyses of local observables. General formulas for the canonical stress-energy and angular-momentum tensors are derived, with spinors and vectors treated in a unified way. It is demonstrated that the antisymmetric terms in the stress-energy tensor are crucial to the correct treatment of angular momentum. The multivector derivative is extended to provide a functional calculus for linear functions which is more compact and more powerful than previous formalisms. This is demonstrated in a reformulation of the functional derivative with respect to the metric, which is then used to recover the full canonical stress-energy tensor. Unlike conventional formalisms, which result in a symmetric stress-energy tensor, our reformulation retains the potentially important antisymmetric contribution.Supported by a SERC studentship.  相似文献   

15.
We develop a projective quantum Monte Carlo algorithm of the Hirsch-Fye type for obtaining ground state properties of the Anderson impurity model. This method is employed to solve the self-consistency equations of dynamical mean field theory. It is shown that the approach converges rapidly to the ground state so that reliable zero-temperature results are obtained. As a first application, we study the Mott-Hubbard metal-insulator transition of the frustrated one-band Hubbard model, reconfirming the numerical renormalization group results.  相似文献   

16.
A degenerate variant of mean field perturbation theory for the on-site Bose-HubbardHamiltonian is presented. We split the perturbation into two terms and perform exactdiagonalization in the two-dimensional subspace corresponding to the degenerate states.The final relations for the second order ground state energy and first order wave functiondo not contain singularities at integer values of the chemical potentials. The resultingequation for the phase boundary between superfluid and Mott states coincides with theprediction from the conventional mean field perturbation approach.  相似文献   

17.
The stochastic processes recently introduced by Grassberger and Cardy are shown to belong to the same universality class as dynamic percolation. To first order in =6–d, whered is the spatial dimensionality, known critical exponents of random percolation are rederived and the new dynamic exponent z=2–1/6+0(2) is calculated by use of the field-theoretic renormalization group method. The relation of the statistics of big clusters (animals) to the Yang-Lee edge singularity in random fields is presented.  相似文献   

18.
R. Bonneville 《Physica A》1980,102(1):49-69
In the molecular field approximation, one derives an expression of the static dielectric constant of an isotropic liquid involving renormalized expressions of the molecular dipole and polarizability. The long-range moderate attractive forces are treated as a perturbation of the short-range intense repulsions, so that two parameters λ and η describe the short-range correlations and the long-range order, respectively. On the condition of a superposition hypothesis, the model is compared in its hard-sphere limit (λ=0, η=1) with the available experimental data about a series of organic liquids and with Onsager's continuum approach.  相似文献   

19.
20.
We investigate the Mott transition using a cluster extension of dynamical mean field theory (DMFT). In the absence of frustration we find no evidence for a finite temperature Mott transition. Instead, in a frustrated model, we observe signatures of a finite temperature Mott critical point in agreement with experimental studies of kappa organics and with single-site DMFT. As the Mott transition is approached, a clear momentum dependence of the electron lifetime develops on the Fermi surface with the formation of cold regions along the diagonal direction of the Brillouin zone. Furthermore, the variation of the effective mass is no longer equal to the inverse of the quasiparticle residue, as in DMFT, and is reduced approaching the Mott transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号