首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton-coupled electron transfer (PCET) was examined in a series of biomimetic, covalently linked Ru(II)(bpy)(3)-tyrosine complexes where the phenolic proton was H-bonded to an internal base (a benzimidazyl or pyridyl group). Photooxidation in laser flash/quench experiments generated the Ru(III) species, which triggered long-range electron transfer from the tyrosine group concerted with short-range proton transfer to the base. The results give an experimental demonstration of the strong dependence of the rate constant and kinetic isotope effect for this intramolecular PCET reaction on the effective proton transfer distance, as reflected by the experimentally determined proton donor-acceptor distance.  相似文献   

2.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sj?din et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.  相似文献   

3.
Photosystem II (PSII) is a photosynthetic reaction center that oxidizes water and reduces bound plastoquinone. PSII electron transfer is mediated by two redox-active tyrosine residues. One of these residues, tyrosine D (YD), has been assigned as Tyr160 of the D2 polypeptide by site-directed mutagenesis and isotopic labeling. Previous spectroscopic evidence has established that His189 in the D2 subunit forms a hydrogen bond with YD* and donates a proton to YD* when the radical is reduced. However, the mechanism of this reaction has not been elucidated. In this report, EPR spectroscopy and 2H2O solvent exchange were used to investigate the pL dependence of the YD* reduction rate. The kinetic isotope effect (KIE), induced by solvent exchange, was also measured as a function of pL. Under the conditions employed, the reduction of YD* is attributed to recombination with the QA- plastoquinone acceptor of PSII. The kinetic data were fit with a biexponential function. The majority, slow phase exhibited a pL-dependent rate constant, with a minimum at pL 7.5. Solvent exchange gave significant KIE at values between pL 5.5 and 8.0. In particular, at high pL (> or =7.5), the values of the KIE were determined to be 2.1 +/- 0.6 and 2.4 +/- 0.5. These values are consistent with a coupled electron and proton reaction, which occurs with a single kinetic step at pL values > or =7.5. The lower KIE values and the rate acceleration observed at low pL may be consistent with a change of mechanism in which the protonation of YD* occurs first, followed by rate-limiting electron transfer. The more modest acceleration in rate at high pL values is attributed to a small, pL-induced change in the distance between YD* and QA-.  相似文献   

4.
5.
The proton-coupled electron transfer reaction catalyzed by soybean lipoxygenase-1 is studied with a multistate continuum theory that represents the transferring hydrogen nucleus as a quantum mechanical wave function. The inner-sphere reorganization energy of the iron cofactor is calculated with density functional theory, and the outer-sphere reorganization energy of the protein is calculated with the frequency-resolved cavity model for conformations obtained with docking simulations. Both classical and quantum mechanical treatments of the proton donor-acceptor vibrational motion are presented. The temperature dependence of the calculated rates and kinetic isotope effects is in agreement with the experimental data. The weak temperature dependence of the rates is due to the relatively small free energy barrier arising from a balance between the reorganization energy and the reaction free energy. The unusually high deuterium kinetic isotope effect of 81 is due to the small overlap of the reactant and product proton vibrational wave functions and the dominance of the lowest energy reactant and product vibronic states in the tunneling process. The temperature dependence of the kinetic isotope effect is strongly influenced by the proton donor-acceptor distance with the dominant contribution to the overall rate. This dominant proton donor-acceptor distance is significantly smaller than the equilibrium donor-acceptor distance and is determined by a balance between the larger coupling and the smaller Boltzmann probability as the distance decreases. Thus, the proton donor-acceptor vibrational motion plays a vital role in decreasing the dominant donor-acceptor distance relative to its equilibrium value to facilitate the proton-coupled electron transfer reaction.  相似文献   

6.
The dynamical behavior and the temperature dependence of the kinetic isotope effects (KIEs) are examined for the proton-coupled electron transfer reaction catalyzed by the enzyme soybean lipoxygenase. The calculations are based on a vibronically nonadiabatic formulation that includes the quantum mechanical effects of the active electrons and the transferring proton, as well as the motions of all atoms in the complete solvated enzyme system. The rate constant is represented by the time integral of a probability flux correlation function that depends on the vibronic coupling and on time correlation functions of the energy gap and the proton donor-acceptor mode, which can be calculated from classical molecular dynamics simulations of the entire system. The dynamical behavior of the probability flux correlation function is dominated by the equilibrium protein and solvent motions and is not significantly influenced by the proton donor-acceptor motion. The magnitude of the overall rate is strongly influenced by the proton donor-acceptor frequency, the vibronic coupling, and the protein/solvent reorganization energy. The calculations reproduce the experimentally observed magnitude and temperature dependence of the KIE for the soybean lipoxygenase reaction without fitting any parameters directly to the experimental kinetic data. The temperature dependence of the KIE is determined predominantly by the proton donor-acceptor frequency and the distance dependence of the vibronic couplings for hydrogen and deuterium. The ratio of the overlaps of the hydrogen and deuterium vibrational wavefunctions strongly impacts the magnitude of the KIE but does not significantly influence its temperature dependence. For this enzyme reaction, the large magnitude of the KIE arises mainly from the dominance of tunneling between the ground vibronic states and the relatively large ratio of the overlaps between the corresponding hydrogen and deuterium vibrational wavefunctions. The weak temperature dependence of the KIE is due in part to the dominance of the local component of the proton donor-acceptor motion.  相似文献   

7.
Cytochrome c (Cyt-c) was electrostatically bound to self-assembled monolayers (SAM) on an Ag electrode, which are formed by omega-carboxyl alkanethiols of different chain lengths (C(x)). The dynamics of the electron-transfer (ET) reaction of the adsorbed heme protein, initiated by a rapid potential jump to the redox potential, was monitored by time-resolved surface enhanced resonance Raman (SERR) spectroscopy. Under conditions of the present experiments, only the reduced and oxidized forms of the native protein state contribute to the SERR spectra. Thus, the data obtained from the spectra were described by a one-step relaxation process yielding the rate constants of the ET between the adsorbed Cyt-c and the electrode for a driving force of zero electronvolts. For C(16)- and C(11)-SAMs, the respective rate constants of 0.073 and 43 s(-1) correspond to an exponential distance dependence of the ET (beta = 1.28 A(-1)), very similar to that observed for long-range intramolecular ET of redox proteins. Upon further decreasing the chain length, the rate constant only slightly increases to 134 s(-1) at C(6)- and remains essentially unchanged at C(3)- and C(2)-SAMs. The onset of the nonexponential distance dependence is paralleled by a kinetic H/D effect that increases from 1.2 at C(6)- to 4.0 at C(2)-coatings, indicating a coupling of the redox reaction with proton-transfer (PT) steps. These PT processes are attributed to the rearrangement of the hydrogen-bonding network of the protein associated with the transition between the oxidized and reduced state of Cyt-c. Since this unusual kinetic behavior has not been observed for electron-transferring proteins in solution, it is concluded that at the Ag/SAM interface the energy barrier for the PT processes of the adsorbed Cyt-c is raised by the electric field. This effect increases upon reducing the distance to the electrode, until nuclear tunneling becomes the rate-limiting step of the redox process. The electric field dependence of the proton-coupled ET may represent a possible mechanism for controlling biological redox reactions via changes of the transmembrane potential.  相似文献   

8.
Abstract

Polyoxometalate (POM) cluster anions form monolayers on metal(0) nanoparticles (NPs) in water, serve as protecting ligands for binary-salt nanocrystals (such as AgCl), and as covalently attached ligands on anatase TiO2 nanocrystals. We now show that the lacunary-Keggin ion [α-AlW11O39]9? (1) binds strongly to Cd2+ in water, providing control over the growth and stability of CdS nanoparticles (NPs) that form upon addition of sulfide. When reduced by a single electron, the already highly negatively charged POM, 1 is protonated by water, and 1-protected CdS NPs were used as visible-light driven electron donors to assess whether combined reduction and protonation of 1 occurred via sequential electron- and proton-transfer steps (an ETPT mechanism), or simultaneously, via concerted proton-electron transfer (CPET). Comparison of the kinetic profiles for reduction of 1 in D2O and in H2O showed the absence of a kinetic isotopic effect (KIE), characteristic of ETPT mechanisms.  相似文献   

9.
The oxidation of the amino acids tyrosine and tryptophan by complexes based on M(bpy)33+ (M = Ru, Os) was studied by monitoring the cyclic voltammetry of the metal complex in the presence of the oxidizable amino acids. Addition of both amino acids to aqueous solutions of the metal complexes in phosphate buffer produced electrocatalytic enhancement in the oxidative wave observed at indium tin oxide electrodes. The kinetics for the oxidation by the Ru(III) and Os(III) forms was determined by digital simulation. The oxidation kinetics for tryptophan were consistent with outer-sphere electron transfer, giving an expected dependence of the oxidation rate constant on the reduction potential of the metal complex. In contrast, oxidation of tyrosine at pH 7.5 did not give an appreciable dependence on the metal complex potential. These results were explained by a kinetic model where proton transfer from tyrosine to phosphate can be the rate-limiting step in competition with a concerted, multisite electron-proton-transfer pathway that is observed at lower base concentrations. These results suggest that tyrosine oxidation in enzymes can access both pathways depending on the solvent accessibility of the oxidized residue and the availability of a suitable proton acceptor.  相似文献   

10.
Proton-coupled electron-transfer reactions are central to enzymatic mechanism in many proteins. In several enzymes, essential electron-transfer reactions involve oxidation and reduction of tyrosine side chains. For these redox-active tyrosines, proton transfer couples with electron transfer, because the phenolic pKA of the tyrosine is altered by changes in the tyrosine redox state. To develop an experimentally tractable peptide system in which the effect of proton and electron coupling can be investigated, we have designed a novel amino acid sequence that contains one tyrosine residue. The tyrosine can be oxidized by ultraviolet photolysis or electrochemical methods and has a potential cross-strand interaction with a histidine residue. NMR spectroscopy shows that the peptide forms a beta-hairpin with several interstrand dipolar contacts between the histidine and tyrosine side chains. The effect of the cross-strand interaction was probed by electron paramagnetic resonance and electrochemistry. The data are consistent with an increase in histidine pKA when the tyrosine is oxidized; the effect of this thermodynamic coupling is to increase tyrosyl radical yield at low pH. The coupling mechanism is attributed to an interstrand pi-cation interaction, which stabilizes the tyrosyl radical. A similar interaction between histidine and tyrosine in enzymes provides a regulatory mechanism for enzymatic electron-transfer reactions.  相似文献   

11.
A luminescent cationic iridium complex with a 2,2'-biimidazole ligand forms hydrogen-bonded 1 : 1 adducts with benzoate anions; photoexcitation of the metal complex in presence of 3,5-dinitrobenzoate triggers a proton-coupled electron transfer.  相似文献   

12.
The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.  相似文献   

13.
The functionality of the proton-coupled electron transfer (PCET) model was tested on a squaraine-sensitized solar cell. The geometrical parameters, excitations, and electronic structures of free and Ti+4-bound squaraine dye were monitored using a set of pure and hybrid density functional theory (DFT) functionals with diffuse and polarization functions. The infrared spectra showed the dye-metal proton transfer. The UV-Vis spectra of unbound and bound squaraine dye using the pure functional (PBEPBE) are in excellent agreement with the experimental ones. The first photoexcited state charge transfer enhanced the charge density around the anchoring group of neat and bound squaraine dye. The injection of electronic charge into the titanium complex was confirmed by density of states (DOS) and natural bond orbital (NBO) analyses. The comparatively high total hyperpolarizability of the squaraine dye is indicative of a potent nonlinear optical (NLO) devise.  相似文献   

14.
Recent advances in the theoretical treatment of proton-coupled electron transfer (PCET) reactions are reviewed. These reactions play an important role in a wide range of biological processes, as well as in fuel cells, solar cells, chemical sensors, and electrochemical devices. A unified theoretical framework has been developed to describe both sequential and concerted PCET, as well as hydrogen atom transfer (HAT). A quantitative diagnostic has been proposed to differentiate between HAT and PCET in terms of the degree of electronic nonadiabaticity, where HAT corresponds to electronically adiabatic proton transfer and PCET corresponds to electronically nonadiabatic proton transfer. In both cases, the overall reaction is typically vibronically nonadiabatic. A series of rate constant expressions have been derived in various limits by describing the PCET reactions in terms of nonadiabatic transitions between electron-proton vibronic states. These expressions account for the solvent response to both electron and proton transfer and the effects of the proton donor-acceptor vibrational motion. The solvent and protein environment can be represented by a dielectric continuum or described with explicit molecular dynamics. These theoretical treatments have been applied to numerous PCET reactions in solution and proteins. Expressions for heterogeneous rate constants and current densities for electrochemical PCET have also been derived and applied to model systems.  相似文献   

15.
Described here are oxidations of alkylaromatic compounds by dimanganese mu-oxo and mu-hydroxo dimers [(phen)(2)Mn(IV)(mu-O)(2)Mn(IV)(phen)(2)](4+) ([Mn(2)(O)(2)](4+)), [(phen)(2)Mn(IV)(mu-O)(2)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(2)](3+)), and [(phen)(2)Mn(III)(mu-O)(mu-OH)Mn(III)(phen)(2)](3+) ([Mn(2)(O)(OH)](3+)). Dihydroanthracene, xanthene, and fluorene are oxidized by [Mn(2)(O)(2)](3+) to give anthracene, bixanthenyl, and bifluorenyl, respectively. The manganese product is the bis(hydroxide) dimer, [(phen)(2)Mn(III)(mu-OH)(2)Mn(II)(phen)(2)](3+) ([Mn(2)(OH)(2)](3+)). Global analysis of the UV/vis spectral kinetic data shows a consecutive reaction with buildup and decay of [Mn(2)(O)(OH)](3+) as an intermediate. The kinetics and products indicate a mechanism of hydrogen atom transfers from the substrates to oxo groups of [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+). [Mn(2)(O)(2)](4+) is a much stronger oxidant, converting toluene to tolyl-phenylmethanes and naphthalene to binaphthyl. Kinetic and mechanistic data indicate a mechanism of initial preequilibrium electron transfer for p-methoxytoluene and naphthalenes because, for instance, the reactions are inhibited by addition of [Mn(2)(O)(2)](3+). The oxidation of toluene by [Mn(2)(O)(2)](4+), however, is not inhibited by [Mn(2)(O)(2)](3+). Oxidation of a mixture of C(6)H(5)CH(3) and C(6)H(5)CD(3) shows a kinetic isotope effect of 4.3 +/- 0.8, consistent with C-H bond cleavage in the rate-determining step. The data indicate a mechanism of initial hydride transfer from toluene to [Mn(2)(O)(2)](4+). Thus, oxidations by manganese oxo dimers occur by three different mechanisms: hydrogen atom transfer, electron transfer, and hydride transfer. The thermodynamics of e(-), H(*), and H(-) transfers have been determined from redox potential and pK(a) measurements. For a particular oxidant and a particular substrate, the choice of mechanism is influenced both by the thermochemistry and by the intrinsic barriers. Rate constants for hydrogen atom abstraction by [Mn(2)(O)(2)](3+) and [Mn(2)(O)(OH)](3+) are consistent with their 79 and 75 kcal mol(-)(1) affinities for H(*). In the oxidation of p-methoxytoluene by [Mn(2)(O)(2)](4+), hydride transfer is thermochemically 24 kcal mol(-)(1) more facile than electron transfer; yet the latter mechanism is preferred. Thus, electron transfer has a substantially smaller intrinsic barrier than does hydride transfer in this system.  相似文献   

16.
Designing molecular platforms for controlling proton and electron movement in artificial photosynthetic systems is crucial to efficient catalysis and solar energy conversion. The transfer of both protons and electrons during a reaction is known as proton-coupled electron transfer (PCET) and is used by nature in myriad ways to provide low overpotential pathways for redox reactions and redox leveling, as well as to generate bioenergetic proton currents. Herein, we describe theoretical and electrochemical studies of a series of bioinspired benzimidazole-phenol (BIP) derivatives and a series of dibenzimidazole-phenol (BI2P) analogs with each series bearing the same set of terminal proton-accepting (TPA) groups. The set of TPAs spans more than 6 pKa units. These compounds have been designed to explore the role of the bridging benzimidazole(s) in a one-electron oxidation process coupled to intramolecular proton translocation across either two (the BIP series) or three (the BI2P series) acid/base sites. These molecular constructs feature an electrochemically active phenol connected to the TPA group through a benzimidazole-based bridge, which together with the phenol and TPA group form a covalent framework supporting a Grotthuss-type hydrogen-bonded network. Infrared spectroelectrochemistry demonstrates that upon oxidation of the phenol, protons translocate across this well-defined hydrogen-bonded network to a TPA group. The experimental data show the benzimidazole bridges are non-innocent participants in the PCET process in that the addition of each benzimidazole unit lowers the redox potential of the phenoxyl radical/phenol couple by 60 mV, regardless of the nature of the TPA group. Using a series of hypothetical thermodynamic steps, density functional theory calculations correctly predicted the dependence of the redox potential of the phenoxyl radical/phenol couple on the nature of the final protonated species and provided insight into the thermodynamic role of dibenzimidazole units in the PCET process. This information is crucial for developing molecular “dry proton wires” with these moieties, which can transfer protons via a Grotthuss-type mechanism over long distances without the intervention of water molecules.

Experimental and theoretical methods characterize the thermodynamics of electrochemically driven proton-coupled electron transfer processes in bioinspired constructs involving multiple proton translocations over Grotthus-type proton wires.  相似文献   

17.
Proton-coupled electron transfer (PCET) is of fundamental importance for small-molecule activation processes, such as water splitting, CO(2)-reduction, or nitrogen fixation. Ideally, energy-rich molecules such as H(2), CH(3)OH, or NH(3) could be generated artificially using (solar) light as an energy input. In this context, PCETs originating directly from electronically excited states play a crucial role. A variety of transition-metal complexes have been used recently for fundamental investigations of this important class of reactions, and the key findings of these studies are reviewed in this article. The present minireview differs from other reviews on the subject of PCET in that it focuses specifically on reactions occurring directly from electronically excited states.  相似文献   

18.
The mechanism of proton-coupled electron transfer (PCET) from tyrosine in enzymes and synthetic model complexes is under intense discussion, in particular the pH dependence of the PCET rate with water as proton acceptor. Here we report on the intramolecular oxidation kinetics of tryptophan derivatives linked to [Ru(bpy)(3)](2+) units with water as proton acceptor, using laser flash-quench methods. It is shown that tryptophan oxidation can proceed not only via a stepwise electron-proton transfer (ETPT) mechanism that naturally shows a pH-independent rate, but also via another mechanism with a pH-dependent rate and higher kinetic isotope effect that is assigned to concerted electron-proton transfer (CEP). This is in contrast to current theoretical models, which predict that CEP from tryptophan with water as proton acceptor can never compete with ETPT because of the energetically unfavorable PT part (pK(a)(Trp(?)H(+)) = 4.7 ? pK(a)(H(3)O(+)) ≈ -1.5). The moderate pH dependence we observe for CEP cannot be explained by first-order reactions with OH(-) or the buffers and is similar to what has been demonstrated for intramolecular PCET in [Ru(bpy)(3)](3+)-tyrosine complexes (Sjo?din, M.; et al. J. Am. Chem. Soc.2000, 122, 3932. Irebo, T.; et al. J. Am. Chem. Soc.2007, 129, 15462). Our results suggest that CEP with water as the proton acceptor proves a general feature of amino acid oxidation, and provide further experimental support for understanding of the PCET process in detail.  相似文献   

19.
A heme model system has been developed in which the heme-propionate is the only proton donating/accepting site, using protoporphyrin IX-monomethyl esters (PPIX(MME)) and N-methylimidazole (MeIm). Proton-coupled electron transfer (PCET) reactions of these model compounds have been examined in acetonitrile solvent. (PPIX(MME))Fe(III)(MeIm)(2)-propionate (Fe(III)~CO(2)) is readily reduced by the ascorbate derivative 5,6-isopropylidine ascorbate to give (PPIX(MME))Fe(II)(MeIm)(2)-propionic acid (Fe(II)~CO(2)H). An excess of the hydroxylamine TEMPOH or of hydroquinone similarly reduces Fe(III)~CO(2), and TEMPO and benzoquinone oxidize Fe(II)~CO(2)H to return to Fe(III)~CO(2). The measured equilibrium constants, and the determined pK(a) and E(1/2) values, indicate that Fe(II)~CO(2)H has an effective bond dissociation free energy (BDFE) of 67.8 ± 0.6 kcal mol(-1). In these PPIX models, electron transfer occurs at the iron center and proton transfer occurs at the remote heme propionate. According to thermochemical and other arguments, the TEMPOH reaction occurs by concerted proton-electron transfer (CPET), and a similar pathway is indicated for the ascorbate derivative. Based on these results, heme propionates should be considered as potential key components of PCET/CPET active sites in heme proteins.  相似文献   

20.
用电子转移的半经典模型和量子化学半经验方法对色氨酸-酪氨酸二肽体系进行电子转移动力学参数计算.用AM1方法分别优化给体、受体和桥体几何构型,用线性反应坐标的构造了给体和受体分子间电子转移的双势阱,得到两透热势能面交叉处的反应坐标为R=(约等于)0.10,并确定了反应的内重组能及反应热.对色氨酰酪氨酸和酪氨酰色氨酸体系进行闭壳层HF自洽场计算,按Koopmans定理计算体系分子轨道分裂能值A(三角形),在R约为0处发现了A(三角形)的极小值,从而获得色氨酰酪氨酸及酪氨酰色氨酸体系分子内电子转移的电子转移矩阵元V~D~A分别为0.96kJ.mol^-^1和0.87kJ.mol^-^1.采用Marcus双球模型估算反应的溶剂重组能为64.60kJ.mol^-^1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号