首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
We have investigated the microstructure, electrical and magnetic properties of the ZnCoO thin films, which were prepared by the asymmetrical bipolar-pulsed DC magnetron sputtering as a function of substrate temperature. The structural properties of ZnCoO films were characterized with a high resolution XRD. The XRD patterns of the ZnCoO films showed a strong (0 0 2) preferential orientation. The average crystallite size was 23–35 nm, which was estimated from full width at half maximum of XRD results. The electrical resistivity of the films were measured by the van der Pauw method through Hall measurement and showed below 10−1 Ω cm above 300 °C. The magnetic properties of the ZnCoO films were analyzed by the alternating gradient magnetometer at room temperature. All of the films were exhibited the ferromagnetic nature. The high conductivity and room temperature ferromagnetism of the ZnCoO films above 300 °C suggested that the possibility for the application to diluted magnetic semiconductors.  相似文献   

2.
研究Ho3+掺杂对氧化锌半导体材料的微结构和磁学性质影响. 利用热蒸发技术制备了一系列沉积在Si(100)衬底的Zn1-xHoxO(x=0.0、0.04、0.05)薄膜. X射线光谱、表面形貌以及磁性的实验结果表明,Ho3+掺杂对ZnO薄膜材料的性能影响很大. X射线衍射图显示峰位出现高角度转变并且趋向于(101)取向,在ZnO晶格显示Ho3+置换. 扫描电子显微镜和能谱仪对薄膜的表面形貌以及化学  相似文献   

3.
Amorphous thin films of InGaZnO4 (a-IGZO) doped with Cr have been fabricated by using pulsed-laser deposition (PLD). The electrical, optical and magnetic properties of Cr-doped a-IGZO films grown at 25 °C and 150 °C were investigated. The conductivity, optical transmission and band gap of films are remarkably enhanced by increasing the growth temperature. Conductivity, carrier concentration and mobility decrease with increasing the Cr content. However, the optical transmission and band gap are not significantly affected by Cr doping. Moreover, all Cr-doped films exhibit room-temperature ferromagnetism.  相似文献   

4.
Wang  L. S.  Liu  S. J.  Guo  H. Z.  Chen  Y.  Yue  G. H.  Peng  D. L.  Hihara  T.  Sumiyama  K. 《Applied Physics A: Materials Science & Processing》2012,106(3):717-723
The ferromagnetic transparent conducting film is a multifunctional film which has high visible transmittance, low resistivity and room-temperature ferromagnetism, simultaneously. In this article, ferromagnetic transparent conducting ZnO:Al/Fe65Co35/ZnO:Al multilayer films were fabricated by inserting a middle magnetic Fe65Co35 layer into aluminum-doped zinc oxide (ZnO:Al) matrix using a magnetron sputtering apparatus at substrate temperature ranging from room temperature (RT) to 400C. The total film thickness was about 400 nm and the middle Fe65Co35 alloy layer was 4 nm. The influences of substrate temperature (T s ) on the structural, electrical, optical and magnetic properties of the multilayer films were systemically investigated. The results showed that the microstructure and performance of the composite multilayer films strongly depended on the substrate temperature. The present results also showed that the inserted middle Fe65Co35 alloy thin layer played an important role in providing the RT ferromagnetism and decreasing the resistivity of the multilayer films. Therefore, it is possible to obtain a multifunctional film material with the combination of good optical transparency, high electrical conductivity and RT ferromagnetism.  相似文献   

5.
Room-T c ferromagnetic insulating Mn-doped TiO2 thin films were prepared by plasma assisted molecular beam epitaxy (PAMBE). The thin films show obvious decay of ferromagnetism when aged in air at room temperature for one year without any special treatment. A distinct reactivation of ferromagnetism, together with a decrease in coercive force is achieved in these samples under laser irradiation treatment. The possible mechanism for the phenomena is also discussed. It is suggested that the bound magnetic polaron (BMP) forming via photo-generated defect-bound carriers accounts for the laser reactivation of room-T c ferromagnetism.  相似文献   

6.
The ion-bean-induced room temperature ferromagnetic ordering in pulsed laser deposited Ca-doped LaMnO3 thin films grown on Si (100) are presented in the present study. In addition to this, changes bought by the ion beam in structural, morphological and electrical properties are presented. Dense electronic excitation produced by high energy 120?MeV Ag9+ ion irradiation causes change in surface roughness, crystallinity and strain. It is also evident that these excitations induce the magnetic ordering in this system. The observed modifications are due to the large electronic energy deposited by swift heavy ion irradiation. The appearance of ferromagnetism at 300?K in these samples after irradiation may be attributed to the canting of the antiferromagnetically ordered spins due to the structural distortion. It is observed that the irradiated films show higher resistance than unirradiated films for all the compositions.  相似文献   

7.
Carbon-doped In2O3 thin films exhibiting ferromagnetism at room temperature were prepared on Si (100) substrates by the rf-magnetron co-sputtering technique. The effects of carbon concentration as well as oxygen atmosphere on the ferromagnetic property of the thin films were investigated. The saturated magnetizations of thin films varied from 1.23 to 4.86 emu/cm3 with different carbon concentrations. The ferromagnetic signal was found stronger in samples with higher oxygen vacancy concentrations. In addition, deposition temperature and different types of substrates also affect the ferromagnetic properties of carbon-doped In2O3 thin films. This may be related to the oxygen vacancies in the thin film system. The experiment suggests that oxygen vacancies play an important role in introducing ferromagnetism in thin films.  相似文献   

8.
We report variable temperature resistivity measurements and mechanisms related to electrical conduction in 200 keV Ni2+ ion implanted ZnO thin films deposited by vapor phase transport. The dc electrical resistivity versus temperature curves show that all polycrystalline ZnO films are semiconducting in nature. In the room temperature range they exhibit band conduction and conduction due to thermionic emission of electrons from grain boundaries present in the polycrystalline films. In the low temperature range, nearest neighbor hopping (NNH) and variable range hopping (VRH) conduction are observed. The detailed conduction mechanism of these films and the effects of grain boundary (GB) barriers on the electrical conduction process are discussed. An attempt is made to correlate electrical conduction behavior and previously observed room temperature ferromagnetism of these films.  相似文献   

9.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

10.
We have investigated the electrical and magnetic properties of solution synthesized Pb0.85La0.15TiO3-CoFe2O4 composite thin films. These composite films exhibit both polarization as well as magnetic hysteresis characteristics at room temperature. The dielectric constant of the composite films is found to increase remarkably up to 6.0 vol% CFO contents. The increase of the dielectric constant and loss tangent follow a general percolation model originally developed for metal-ceramic composites. It is argued that Maxwell-Wagner polarization, as well as diffusion of transition metal cation(s) from CFO to PLT15 lattice are responsible for the percolative behavior of the dielectric properties in these films.  相似文献   

11.
This paper reports that polycrystalline Si 0.956 Mn 0.044 :B films have been prepared by cosputtering deposition followed by rapid thermal annealing for crystallization. The polycrystalline thin films were treated by hydrogen plasma excited with approach of radio-frequency plasma enhanced chemical vapour deposition for different time of 10 minutes, 15 minutes and 40 minutes. After hydrogenation, the structural properties of the films do not show any change, while both the saturation magnetization and the hole concentration in the films increase at first, then decrease with the increase of hydrogenation time. The obvious correlation between the magnetic properties and the transport properties of the polycrystalline Si 0.956 Mn 0.044 :B films suggests that a mechanism of hole-mediated ferromagnetism is believed to exist in Si-based diluted magnetic semiconductors.  相似文献   

12.
This paper reports ZnSe/Co bilayer diluted magnetic semiconductor thin films have been prepared by using thermal evaporation technique. The bilayer DMS thin films were hydrogenated at different pressures (15–45 psi) for a constant time of 30 min. Before and after hydrogenations of these bilayer thin films the electrical, optical and magnetic properties have been investigated. Electrical resistivity and optical band gap were found to be increased with respect to hydrogenation pressure. X-ray diffraction (XRD) and magnetic measurements confirmed the formation of DMS ZnSe/Co bilayer DMS thin films. Raman spectra show the presence of hydrogen in these thin films. Surface topography study of as-grown, annealed and hydrogenated ZnSe/Co bilayer thin films indicates uniform deposition, mixing of layers and increment in roughness at the surface due to hydrogen passivation effect respectively.  相似文献   

13.
氧空位对钴掺杂氧化锌半导体磁性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
陈静  金国钧  马余强 《物理学报》2009,58(4):2707-2712
从实验和理论上阐述了氧空位对Co掺杂ZnO半导体磁性能的影响.采用磁控溅射法在不同的氧分压下制备了Zn095Co005O薄膜,研究了氧分压对薄膜磁性能的影响.实验结果表明,高真空条件下制备的Zn095Co005O薄膜具有室温铁磁性,提高氧分压后制备的薄膜铁磁性逐渐消失.第一性原理计算表明,在Co掺杂ZnO体系中引入氧空位有利于降低铁磁态的能量,铁磁态的稳定性与氧空位和Co之间的距离密切相关. 关键词: Co掺杂ZnO 稀磁半导体 第一性原理计算 氧空位缺陷  相似文献   

14.
We report on the defects related room temperature ferromagnetic characteristics of Zn0.95-xMnxLi0.05O (x = 0.01, 0.03, 0.05 and 0.08) thin films grown on glass substrates using reactive magnetron sputtering. By increasing the Mn content, the films exhibited increases in the c-axis lattice constant, fundamental band gap energy, coercive field and remanent magnetization. Comparison of the structural and magnetic properties of the as-deposited and annealed films indicates that the hole carriers, together with defects concentrations, play an important role in the ferromagnetic origin of Mn and Li co-doped ZnO thin films. The ferromagnetism in films can be described by bound magnetic polaron models with respect to defect-bound carriers.  相似文献   

15.
Spin coated pristine TiO2 thin films show magnetic behaviors that are similar to those of pulsed laser ablated TiO2 thin films that were reported previously. It seems that in this kind of material, ferromagnetism (FM) is indeed intrinsic, and it can be achieved by various deposition techniques. The fact that oxygen annealing degrades the magnetic moment implies that the observed magnetism is likely due to defects or/and oxygen vacancies. Moreover, thick films that were deposited under the same growth conditions have the magnetic ordering degraded enormously. It is found that as for FM in undoped TiO2 films made by the chemical solution deposition, not only do defects/oxygen vacancies play a role, but also the confinement effects seem to be important.  相似文献   

16.
张云开  顾建军  刘力虎  张海峰  徐芹  孙会元 《物理学报》2011,60(6):67502-067502
采用直流磁控共溅的方法在玻璃基底上制备了不同厚度的Al掺杂ZnO薄膜,并在真空和空气中分别退火.利用X射线衍射仪(XRD)和物理性能测量仪(PPMS)对系列薄膜的结构和磁性进行了表征.XRD结果显示:随着膜厚的增加,晶粒尺寸逐渐增大,薄膜的内应力逐渐减小.在空气退火的薄膜样品中观察到了室温的铁磁性,薄膜的饱和磁化强度Ms 随着膜厚的增加而增大,而矫顽力Hc却随着膜厚的增加而减小. 关键词: Al掺杂ZnO薄膜 薄膜厚度 应力 铁磁性  相似文献   

17.
Nd-doped BiFeO3 thin films were grown by pulsed laser deposition on quartz substrate and their structural, optical and magnetic properties have been studied. X-ray diffraction analysis revealed that Nd addition caused structural distortion even with 5% of Nd concentration, additional secondary phase appeared in all samples but its intensity was greatly reduced with Nd addition. Doping-induced variations in texture and structure modifying both magnetic and optical properties of BiFeO3 thin films. The energy band gap decreases while the refractive index increases with addition of Nd3+ in BiFeO3 for Bi3+. These variations in energy band gap and refractive index have been explained on the basis of density of states and increase in disorders in the system. All the samples were found to exhibit ferromagnetism at room temperature and the saturation magnetization increases with the increase in structural distortion with addition of Nd. Finally, Nd-doping modifies the physical properties of BiFeO3 in comparison to undoped BiFeO3 thin films.  相似文献   

18.
Room temperature ferromagnetism in both transition-metals doped and undoped semiconductor thin films and nanostructures challenges our understanding of the magnetism in solids. In this report, we performed the magnetic measurement and Andreev reflection spectroscopy study on undoped Indium-Tin oxide (ITO) thin films and bulk samples. The magnetic measurement results of thin films show that the total magnetization/cm2 is thickness independent. Prominent ferromagnetism signal was also discovered in bulk samples. Spin polarized electron transports were probed on ITO thin film/superconductor interface and bulk samples surface/superconductor interface. Based on the magnetic measurement results and spin polarization measurement data, we propose that the ferromagnetism in this material originates from the surface spin polarization and this surface polarization may also explain the room temperature ferromagnetism discovered in other undoped oxide semiconductor thin films and nanostructures.  相似文献   

19.
We present a systematic study of the structure, magnetization, resistivity, and Hall effect properties of pulsed laser deposited Fe- and Cu-codoped In2O3 and indium-tin-oxide (ITO) thin films. Both the films show a clear ferromagnetism and anomalous Hall effect at 300 K. The saturated magnetic moments are almost the same for the two samples, but their remanent moments Mr and coercive fields HC are quite different. Mr and HC values of ITO film are much smaller than that of In2O3. The ITO sample shows a typical semiconducting behavior in whole studied temperature range, while the In2O3 thin film is metallic in the temperature range between 147 and 285 K. Analysis of different conduction mechanisms suggest that charge carriers are not localized in the present films. The profile of the anomalous Hall effect vs. magnetic field was found to be identical to the magnetic hysteresis loops, indicating the possible intrinsic nature of ferromagnetism in the present samples.  相似文献   

20.
Recent studies on the physical properties of Ca3Co2O6 nanometric samples have shown that their properties are significantly different from those of the bulk samples. The origin of this change is not trivial. We have carried out optical measurements on Ca3Co2O6 thin films with different thicknesses in order to characterize their electronic structure using optical spectroscopy measurements. The absorption spectra show a dependence on the film thickness that is correlated to the grain size in the polycrystalline layers. We found that the optical band gap increases from 1.3 to 1.55 eV when the thickness changes from 35 to 100 nm. The change in the band gap evolution with the film thickness is discussed in terms of both the amorphous effect and the grain size in the Ca3Co2O6 thin films. Finally, we show that these results are consistent with recent measurements concerning magnetic and electrical properties of Ca3Co2O6 nanometric samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号