首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper is aimed at investigating the dynamics of release of objects in free-falling conditions, which constitutes a typical phase of some space applications. In the presence of surface interaction forces, a quick separation of the released body from the constraining one will result in a momentum transfer, provided that the inertial forces exceed the maximum attractive force. The release conditions as well as the related parameters affecting the momentum acquired by the released body through the adhesion rupture play a fundamental role. An experimental technique aimed at measuring the momentum transfer has been developed. The basic concept of the measuring apparatus is to suspend both bodies from two pendulums. A position sensor detects the weakly damped oscillation of one object due to the momentum transferred upon pulling the other one away. Particular attention has been placed on the capability to accurately reproduce the stress status on the adhesive contact patch between the two bodies, on the noise sources affecting the measurement, and on the performances of a noise optimal-filtering technique. This paper presents measurements of momentum transfer between adhered surfaces upon quick separation.  相似文献   

2.
三维激光扫描技术获取高精度DTM的应用研究   总被引:2,自引:0,他引:2  
周群  何斌  岳继光 《力学学报》2007,39(3):428-432
基于离心分离技术研制了微小力测试平台,测 试到蚂蚁在光滑玻璃上的水平吸附力可达40倍身体重量. 用扫描电子显微镜观察 了蚂蚁足的形态. 分析结果表明分泌液对吸附是很重要的,排除掉真空力、静电力等吸附机 制后,推断吸附力主要来源于由分泌液产生的垂直于表面方向的毛细作用力和平行 方向的黏性力. 用ANSYS分析表明垫子表面微褶皱可迅速排出液体. 这些研究可进 一步揭开昆虫的吸附机制.  相似文献   

3.
The instantaneous squeeze-film force between a heat exchanger tube and a support plate is studied. Based on a two-dimensional rectangular plate model, a short-sleeve squeeze-film model for arbitrary tube motion is developed. The instantaneous squeeze-film force is expressed in normal and tangential directions. The normal squeeze-film force consists of four nonlinear terms, the viscous, unsteady inertia, convective inertia and centripetal inertia terms. Three nonlinear terms, the viscous, unsteady inertia and Coriolis inertia terms, make up the tangential squeeze-film force. An experimental apparatus was developed in order to evaluate the theoretical models against measurements of a finite length squeeze film. A modified model based on the experimental data is obtained where the viscous terms for both directions are multiplied by the instantaneous Reynolds number. All the inertia terms are multiplied by constant coefficients. The modified model is in good agreement with most experimental cases for unsymmetrical linear motion, approximate circular motion and elliptical motion. The form of the modified model is suitable for predicting instantaneous squeeze-film forces in the simulation of heat exchanger tube vibration. Further work using different sized components and fluid properties is required in order to finalize coefficient values.  相似文献   

4.
The entry of a space body with a super orbital velocity into the Earth’s atmosphere is considered. Large aerodynamic loads, the forces of inertia, and the thermal flows to the body lead to the surface mass loss and to a possible mechanical failure. From observations it is known that the flight of a space body often ends with a powerful final burst. One of the adequate approaches to the estimation of energy release at the final stage of the body’s destruction is proposed to confirm the possibility of observing the effect of “thermal explosion” of a meteoroid.  相似文献   

5.
Geckos and many insects have evolved elastically anisotropic adhesive tissues with hierarchical structures that allow these animals not only to adhere robustly to rough surfaces but also to detach easily upon movement. In order to improve our understanding of the role of elastic anisotropy in reversible adhesion, here we extend the classical JKR model of adhesive contact mechanics to anisotropic materials. In particular, we consider the plane strain problem of a rigid cylinder in non-slipping adhesive contact with a transversely isotropic elastic half space with the axis of symmetry oriented at an angle inclined to the surface. The cylinder is then subjected to an arbitrarily oriented pulling force. The critical force and contact width at pull-off are calculated as a function of the pulling angle. The analysis shows that elastic anisotropy leads to an orientation-dependent adhesion strength which can vary strongly with the direction of pulling. This study may suggest possible mechanisms by which reversible adhesion devices can be designed for engineering applications.  相似文献   

6.
Adhesive forces commonly exhibit a monotonic increase or a maximum with increasing relative humidity. However, anomalous behavior has been reported. Here, a numerical model of adhesive forces, comprised mainly of capillary and van der Waals forces, between a tip and a surface is established. It is described by a power law that considers the geometry, the liquid bridge wetting radius, the contact angle, and the separation distance. Capillary forces (sum of surface tension and Laplace pressure) and van der Waals forces are calculated. The latter cannot be neglected in the adhesion even at high humidity. Decrease in adhesion with increasing relative humidity can be attributed to a blunt tip shape, which is validated by experimental data. Specifically, the decrease in adhesion is attributed primarily to a transition from a rounded to a blunt tip shape. Structuring objects at the micro- or nanoscale can either increase or decrease adhesion as a function of relative humidity. This has a wide range of applications in robotic manipulation and can provide a better understanding of adhesion mechanisms in atomic force microscopy in ambient air.  相似文献   

7.
This paper is the sequel of a companion Part I paper devoted to the constitutive equations and to the quasi-static behavior of a second strain gradient material model with second velocity gradient inertia. In the present Part II paper, a multi-cell homogenization procedure (developed in the Part I paper) is applied to a nonhomogeneous body modelled as a simple material cell system, in conjunction with the principle of virtual work (PVW) for inertial actions (i.e. momenta and inertia forces), which at the macro-scale level takes on the typical format as for a second velocity gradient inertia material model. The latter (macro-scale) PVW is used to determine the equilibrium equations relating the (ordinary, double and triple) generalized momenta to the inertia forces. As a consequence of the surface effects, the latter inertia forces include (ordinary) inertia body forces within the bulk material, as well as (ordinary and double) inertia surface tractions on the boundary layer and (ordinary) inertia line tractions on the edge line rod; they all depend on the acceleration in a nonstandard way, but the classical laws are recovered in the case of no higher order inertia. The classical linear and angular momentum theorems are extended to the present context of second velocity gradient inertia, showing that the extended theorems—used in conjunction with the Cauchy traction theorem—lead to the local force and moment (stress symmetry) motion equations, just like for a classical continuum. A gradient elasticity theory is proposed, whereby the dynamic evolution problem for assigned initial and boundary conditions is shown to admit a Hamilton-type variational principle; the uniqueness of the solution is also discussed. A few simple applications to wave propagation and dispersion problems are presented. The paper indicates the correct way to describe the inertia forces in the presence of higher order inertia; it extends and improves previous findings by the author [Polizzotto, C., 2012. A gradient elasticity theory for second-grade materials and higher order inertia. Int. J. Solids Struct. 49, 2121–2137]. Overall conclusions are drawn at the end of the paper.  相似文献   

8.
It remains unclear to what extent inviscid added-mass theory accounts for the forces exerted on an accelerating body subjected to separated flow. In this study, reactant forces and velocity-field data are systematically acquired using experimental measurements and simulations of an accelerating circular flat plate. Cases accelerated from rest are compared to cases accelerated from a steady flow state. When the added-mass forces predicted by potential theory and the resistance forces associated with the instantaneous plate velocity are accounted for, the remaining (residual) forces comprise approximately 20% of the peak force, even at high accelerations. In addition, the computed residual forces during accelerations both from rest and steady-state cases yield good collapse with respect to one another, indicating that the total forces are not a strong function of the initial state of the wake. These results suggests that inviscid added-mass theory is inadequate to predict the full reactant force even in the ‘ideal’ condition of impulsive motion from rest.  相似文献   

9.
陈少华  彭志龙 《力学进展》2012,42(3):282-293
本文针对壁虎粘附系统最小单元的真实形状, 类似于有限尺寸纳米薄膜的铲状纤维, 综述了对其微观粘附力学机制主要影响因素的多个研究, 主要考虑了有限尺寸纳米薄膜长度、厚度、撕脱角等对撕脱力的影响; 物体表面粗糙度以及环境湿度等对粘附的影响因素; 包括实验、理论及数值模拟的研究及结果比较. 最后给出仿生粘附力学方向仍然存在的主要科学问题及进一步的研究展望.  相似文献   

10.
This letter reviews the adhesive and frictional properties of the first mushroom-shaped adhesive microstructure (MSAMS), which has come a long way from inspiration by the attachment devices evolved in beetles to a large-scale industrial production. It was shown to have an that about twice higher pull-off force compared to a smooth control made from the same material measured on smooth substrates. Pull-off forces measured underwater are even higher than those in air. Moreover, it retained adhesive performance over thousands of attachment cycles and initial adhesive capability could be recovered by washing after being contaminated. In shearing, MSAMS exhibits reduced and stabilized friction in comparison with a smooth control, which demonstrated pronounced stick-slip motion, and shows zero pull-off force in a sheared state, allowing the adhesion to be switched on and off. The presence of a fluid in the contact zone showed adhesion enhancement on both smooth and rough substrates. All these features lead us to conclude that MSAMS may have practical potential in a variety of applications.  相似文献   

11.
The nature of the forces acting on a weakly conductive liquid dielectric in an electric field will be considered. In the general case there act upon the liquid dielectric a Coulomb force related to space charge and a polarization force [1]. In many studies the motion of a conductive liquid dielectric has been explained by the presence of the polarization force, with the Coulomb force being ignored. In the present study it will be demonstrated that the force related to space charge may be larger than or of the same order as the forces connected with polarization of the medium and, generally speaking, must be considered in describing the equations of motion in concrete cases.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 155–157, January–February, 1977.  相似文献   

12.
The vibration method represents a practical method for the measurement of adhesion forces and adhesion force distributions. This method causes sinusoidally altemating stresses and yields detachment and contact forces between particles and substrate of the same order of magnitude. Alternating contact forces of the vibration method can cause an adhesion force intensification through flattening of asperities. The measuring principle of the vibration method and the analysis of experimental results are described in the article. Normal adhesion forces (pull-off forces) are measured using the vibration method and the colloidal probe technique. The results of both methods show good agreement for small particle sizes. The influence of the detachment force direction is shown by comparing tangential and normal adhesion forces measured using particle reentrainment in a turbulent air flow and the vibration method, respectively. The surface roughness of the substrate and the relative humidity are shown to significantly influence the measured adhesion forces. For the calculation of the adhesion forces, an approach by Rabinovich was combined with approximations of plastic micro asperity flattening. The Rabinovich approach accounts for roughness effects on the van der Waals force by incorporating the rms roughness of the interacting surfaces. rms-values of the particles and substrates were measured with atomic force microscopy at different scanning areas.  相似文献   

13.
In measuring the fluid forces acting on an accelerating cylinder, it is important to remove the force required to accelerate the cylinder mass from the total force sensed by the force transducer. A low-cost data-acquisition system which electronically subtracts the cylinder inertia force from the total force is described along with appropriate-filter circuits. An experimental procedure for obtaining the correct subtraction condition is outlined. The results indicate that less than two percent of the inertia force remain in the fluid-force signal and all significant spurious high-frequency noise has been eliminated by the filter circuits. These concepts and circuits can be applied to many different measurement environments.  相似文献   

14.
In this paper procedures are developed to identify traction–separation curves from digital images of the deformed flexible films during peeling. T-peel tests were performed for self-adhesive polymeric films. High quality photographs of the deformed shape within and outside the zone of adhesive interaction were made in situ by the digital light microscope. The deformed line is approximated by a power series with coefficients computed by minimizing a least squares functional. Two approaches to identify the traction–separation curve for the given deformation line are proposed. The first one is based on the energy integral of the non-linear theory of rods and allows the direct evaluation of the adhesion force potential. The second one utilizes the complementary energy type variational equation and the Ritz method to compute the adhesion force. The accuracy of both approaches is analyzed with respect to different approximations for the deformed line and the force of interaction. The obtained traction vs. axial coordinate and the traction–separation curves provide several properties of the adhesive system including the maximum adhesion force, the length of the adhesive zone and the equilibrium position, where the adhesive force is zero while the separation is positive.  相似文献   

15.
Adhesive force between two solid surfaces can lead to stiction failure of the micro-electro-mechanical systems (MEMS) device. The competition between the adhesive force and the beam restoring force determines whether the stiction occurs or not. Previous models assume that the stuck beam deforms either as the arc-shape or the S-shape, which causes significant differences in the measurements of adhesion and disputations among researchers. The contact mechanics model presented in this paper shows that the assumptions of the arc-shape and S-shape on the beam deformation over-simplify the problem; both the arc-shaped deformation and S-shaped deformation significantly deviate from the real ones. The previous theories are shown to be incompatible with the recent experimental results. The model presented in this paper attempts to explain those new experimental results and resolve some disputations on the previous models. The instabilities of jump-in during loading process and jump-off during unloading process are also incorporated in this model.  相似文献   

16.
We have recently proposed a generalized JKR model for non-slipping adhesive contact between two elastic spheres subjected to a pair of pulling forces and a mismatch strain (Chen, S., Gao, H., 2006c. Non-slipping adhesive contact between mismatched elastic spheres: a model of adhesion mediated deformation sensor. J. Mech. Phys. Solids 54, 1548–1567). Here we extend this model to adhesion between two mismatched elastic cylinders. The attention is focused on how the mismatch strain affects the contact area and the pull-off force. It is found that there exists a critical mismatch strain at which the contact spontaneously dissociates. The analysis suggests possible mechanisms by which mechanical deformation can affect binding between cells and molecules in biology.  相似文献   

17.

It has been shown in recent years that many species in Nature employ hierarchy and contact splitting as a strategy to enhance the adhesive properties of their attachments. Maximizing the adhesive force is however not the only goal. Many animals can achieve a tunable adhesive force, which allows them to both strongly attach to a surface and easily detach when necessary. Here, we study the adhesive properties of 3D dendritic attachments, which are structures that are widely occurring in nature and which allow to achieve these goals. These structures exploit branching to provide high variability in the geometry, and thus tunability, and contact splitting, to increase the total peeling line and thus the adhesion force. By applying the same principles presented by A.A. Griffith 100 years ago, we derive an analytical model for the detachment forces as a function of their defining angles in 3D space, finding as limit cases 2D double peeling and 1D single peeling. We also develop a numerical model, including a nonlinear elastic constitutive law, for the validation of analytical calculations, allowing additionally to simulate the entire detachment phase, and discuss how geometrical variations influence the adhesive properties of the structure. Finally, we also realize a proof of concept experiment to further validate theoretical/numerical results. Overall, we show how this generalized attachment structure can achieve large variations in its adhesive and mechanical properties, exploiting variations of its geometrical parameters, and thus tunability. The in-depth study of similar basic structural units and their combination can in future lead to a better understanding of the mechanical properties of complex architectures found in Nature.

  相似文献   

18.
The effects of buoyancy, produced by a uniform vertical concentration gradient and body force, on a homogeneous turbulent field accompanied by a first-order chemical reaction, are analysed by considering a simplified model. A system of two-point correlation equations, which contains mean concentration gradient and body force terms, is constructed from the Navier-Stokes, convective diffusion and continuity equations. By well-known methods, these equations are converted into equations for the spectrum functions in the wave-number space and solutions for different spectral tensors are obtained by neglecting the contributions of the triple correlation terms. For carrying out the numerical calculations, it is assumed that the turbulence is initially isotropic and the concentration fluctuations initially zero. It turns out that the turbulence decays with time, although the buoyancy forces do alter the rate of decay. The buoyancy forces can either extract energy from the turbulent field or feed energy into it, depending upon the direction of the body force and the concentration gradient. Spectra are displayed graphically for several values of the reaction rate parameter for stabilizing, as well as destabilizing, buoyancy forces.  相似文献   

19.
Adhesive contact between a rigid sphere and an elastic film on an elastic–perfectly plastic substrate was examined in the context of finite element simulation results. Surface adhesion was modeled by nonlinear springs obeying a force-displacement relationship governed by the Lennard–Jones potential. A bilinear cohesive zone law with prescribed cohesive strength and work of adhesion was used to simulate crack initiation and growth at the film/substrate interface. It is shown that the unloading response consists of five sequential stages: elastic recovery, interface damage (crack) initiation, damage evolution (delamination), film elastic bending, and abrupt surface separation (jump-out), with plastic deformation in the substrate occurring only during damage initiation. Substrate plasticity produces partial closure of the cohesive zone upon full unloading (jump-out), residual tensile stresses at the front of the crack tip, and irreversible downward bending of the elastic film. Finite element simulations illustrate the effects of minimum surface separation (i.e., maximum compressive surface force), work of adhesion and cohesive strength of the film/substrate interface, substrate yield strength, and initial crack size on the evolution of the surface force, residual deflection of the elastic film, film-substrate separation (debonding), crack-tip opening displacement, and contact instabilities (jump-in and jump-out) during a full load–unload cycle. The results of this study provide insight into the interdependence of contact instabilities and interfacial damage (cracking) encountered in layered media during adhesive contact loading and unloading.  相似文献   

20.
活力板运动的动力学分析   总被引:1,自引:0,他引:1  
作为一种特殊的滑板运动,活力板依靠乘员自身的摆动和扭动前进. 本文分析活力板运动的动力学 原理. 当乘员的动作引起前后板的周期性摇摆时,地面对轮缘的摩擦力可产生向前 的推动效应. 导出推力平均值的计算公式, 并解释蛇形轨迹的产生原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号