首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A high-performance liquid chromatographic procedure was developed for the isolation and quantitation of coumarin from vanilla-based liquid flavorings of Mexican origin. Forty products representing fourteen different Mexican brands were assayed for coumarin, vanillin, and ethyl vanillin by the proposed method. The procedure has been adapted to the analysis of other products including domestic vanilla extracts and imitation vanilla flavorings for vanillin, ethyl vanillin, 4-hydroxybenzaldehyde and piperonal. Chromatographic retention data for thirty-seven compounds associated with vanillin and vanilla products employing two mobile phase systems are presented.  相似文献   

2.
A LC-MS method was developed for the determination of coumarin, vanillin, and ethyl vanillin in vanilla products. Samples were analyzed using LC-electrospray ionization (ESI)-MS in the positive ionization mode. Limits of detection for the method ranged from 0.051 to 0.073 microg mL(-1). Using the optimized method, 24 vanilla products were analyzed. All samples tested negative for coumarin. Concentrations ranged from 0.38 to 8.59 mg mL(-1) (x =3.73) for vanillin and 0.33 to 2.27 mg mL(-1) (x =1.03) for ethyl vanillin. The measured concentrations are compared to values calculated using UV monitoring and to results reported in a similar survey in 1988. Analytical results, method precision, and accuracy data are presented.  相似文献   

3.
Summary Thin layer chromatography on silica gel high performance layers and automated multiple development was used to separate the polar aromatic flavor compounds vanillin, ethyl vanillin, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzyl alcohol, vanillic acid, coumarin, piperonal, anisic acid, and anisaldehyde commonly found in extracts of natural and artificial vanilla flavors. The ratio of 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde and vanillic acid to vanillin in natural vanilla extracts was used to confirm the authenticity of extracts purchased in the United States of America and the United Kingdom. Natural vanilla extracts purchased in Mexico and Puerto Rico were identified as counterfeit products based on changes in the above ratio and the presence of synthetic flavor compounds such as ethyl vanillin and coumarin. It is also demonstrated that the proposed method is suitable for the determination of natural and synthetic vanilla flavors in solvent extracts from food, beverage and confectionery products. The main advantage of thin layer chromatography for the analysis of vanilla extracts and food stuffs flavored with vanilla is its high sample throughput since sample preparation requirements are minimal and multiple samples can be separated simultaneously.  相似文献   

4.
A new method to quick extraction of vanillin and p-hydroxybenzaldheyde (PHB) of vanilla beans from vanilla fragans is proposed. Samples were irradiated with microwaves energy to accelerate the extraction process and photometric monitoring was performed at 348 and 329 nm (vanillin and PHB, respectively). The simultaneous determination of vanillin and PHB from extracts was performed using the Vierordt's method, which showed a precision, expressed as relative standard deviation, smaller 2.5% for both analytes. Conditions such as microwaves irradiation power, number of irradiation and non-irradiation cycles, irradiation time and ethanol concentration were optimized by means of multivariate screening that showed that irradiation power and number of irradiation cycles are the most significant condition in the vanilla extraction process. The focused microwave-assisted extraction (FMAE) was applied to commercial (dried vanilla beans from fresh green vanilla beans), lyophilised and dried (commercial vanilla dried at 135 °C in oven) vanilla beans samples. The results showed that the extraction of vanillin and PHB in the commercial vanilla samples were higher than in dried and lyophilised samples. With the proposed FMAE a decrease in the extraction time of 62 times and an increase in the vanillin and PHB concentrations between 40 and 50% with respect to the official Mexican extraction method, were obtained.  相似文献   

5.
Chemiluminometric determination of vanillin in commercial vanillin products   总被引:1,自引:0,他引:1  
Vanillin, ethylvanillin and 4-hydroxy-3-methoxy-benzylalcohol have been found to chemiluminesce by the action of potassium permanganate in sulphuric or polyphosphoric acid media. Both acid media have been compared and sulphuric acid allows the sensitive determination of 0.15-10.0, 0.010-1.0 and 0.0030-0.30 μg mL−1 of vanillin, ethylvanillin and 4-hydroxy-3-methoxy-benzylalcohol with limits of detection equal to 0.045, 0.0030 and 0.00090 μg mL−1, respectively. Recoveries of vanillin from commercial vanillin products are within the range of 95-109%. Comparison with results from the official method shows differences within the range of 0.5-3.0%. The chemiluminogenic reaction mechanism is also discussed.  相似文献   

6.
Microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and conventional extraction of vanillin and its quantification by HPLC in pods of Vanilla planifolia is described. A range of nonpolar to polar solvents were used for the extraction of vanillin employing MAE, UAE and conventional methods. Various extraction parameters such as nature of the solvent, solvent volume, time of irradiation, microwave and ultrasound energy inputs were optimized. HPLC was performed on RP ODS column (4.6 mm ID x 250 mm, 5 microm, Waters), a photodiode array detector (Waters 2996) using gradient solvent system of ACN and ortho-phosphoric acid in water (0.001:99.999 v/v) at 25 degrees C. Regression equation revealed a linear relationship (r2 > 0.9998) between the mass of vanillin injected and the peak areas. The detection limit (S/N = 3) and limit of quantification (S/N = 10) were 0.65 and 1.2 microg/g, respectively. Recovery was achieved in the range 98.5-99.6% for vanillin. Maximum yield of vanilla extract (29.81, 29.068 and 14.31% by conventional extraction, MAE and UAE, respectively) was found in a mixture of ethanol/water (40:60 v/v). Dehydrated ethanolic extract showed the highest amount of vanillin (1.8, 1.25 and 0.99% by MAE, conventional extraction and UAE, respectively).  相似文献   

7.
Five vanilla-related flavors of food significance, vanillic alcohol (VOH), ethyl maltol (EMA), maltol (MAL), ethyl vanillin (EVA) and vanillin (VAN), were separated using CE microchips with electrochemical detection (CE-ED microchips). A +2 kV driving voltage for both injection and separation operation steps, using a borate buffer (pH 9.5, 20 mM) and 1 M nitric acid in the detection reservoir allowed the selective and sensitive detection of the target analytes in less than 200 s with reproducible control of EOF (RSD(migration times)<3%). The analysis in selected real vanilla samples was focusing on VAN and EVA because VAN is a basic fragrance compound of the vanilla aroma, whereas EVA is an unequivocal proof of adulteration of vanilla flavors. Fast detection of all relevant flavors (200 s) with an acceptable resolution (R(s) >1.5) and a high accuracy (recoveries higher than 90%) were obtained with independence of the matrices and samples examined. These results showed the reliability of the method and the potential use of CE microchips in the food control field for fraudulent purposes.  相似文献   

8.
A simple, fast and sensitive RP-HPTLC method is developed for simultaneous quantitative determination of vanillin and related phenolic compounds in ethanolic extracts of Vanilla planifolia pods. In addition to this, the applicability of accelerated solvent extraction (ASE) as an alternative to microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE) and Soxhlet extraction was also explored for the rapid extraction of phenolic compounds in vanilla pods. Good separation was achieved on aluminium plates precoated with silica gel RP-18 F(254S) in the mobile phase of methanol/water/isopropanol/acetic acid (30:65:2:3, by volume). The method showed good linearity, high precision and good recovery of compounds of interest. ASE showed good extraction efficiency in less time as compared to other techniques for all the phenolic compounds. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.  相似文献   

9.
A disposable electrochemical sensor was developed for the detection of vanillin in vanilla extracts and in commercial products. An analytical procedure based on square-wave voltammetry (SWV) was optimised and a detection limit of 0.4 μM for vanillin was found. A relative standard deviation of 2% was calculated for a vanillin concentration of 100 μM. The method was applied to the determination of vanillin in natural concentrated vanilla extracts and in final products such as yoghurt and compote. The obtained results were compared with those provided by a reference method based on HPLC. The electrochemical behaviour of other compounds (vanillic acid, p-hydroxybenzaldehyde, p-hydroxybenzoic acid, etc.), generally present in natural oleoresins, were also studied, to check for interferences with respect to the vanillin voltammetric signal.  相似文献   

10.
A rapid and sensitive technique for frauds determination in vanilla flavors was developed. The method comprises separation by liquid chromatography followed by an electrochemical detection using a homemade screen-printed carbon electrode modified with aluminium-doped zirconia nanoparticles (Al-ZrO2-NPs/SPCE). The prepared nanomaterials (Al-ZrO2-NPs) were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray (EDX). This method allows for the determination of six phenolic compounds of vanilla flavors, namely, vanillin, p-hydroxybenzoic acid, p-hydroxybenzaldehyde, vanillyl alcohol, vanillic acid and ethyl vanillin in a linear range between 0.5 and 25 µg g−1, with relative standard deviation values from 2.89 to 4.76%. Meanwhile, the limits of detection and quantification were in the range of 0.10 to 0.14 µg g−1 and 0.33 to 0.48 µg g−1, respectively. In addition, the Al-ZrO2-NPs/SPCE method displayed a good reproducibility, high sensitivity, and good selectivity towards the determination of the vanilla phenolic compounds, making it suitable for the determination of vanilla phenolic compounds in vanilla real extracts products.  相似文献   

11.
Vanilla (Vanilla planifolia) is a precious natural flavoring that is commonly used throughout the world. In the past, all vanilla used in Taiwan was imported; however, recent breakthroughs in cultivation and processing technology have allowed Taiwan to produce its own supply of vanilla. In this study, headspace solid-phase microextraction (HS-SPME) combined with GC-FID and GC-MS was used to analyze the volatile components of vanilla from different origins produced in Taiwan under different cultivation and processing conditions. The results of our study revealed that when comparing different harvest maturities, the composition diversity and total volatile content were both higher when the pods were matured for more than 38 weeks. When comparing different killing conditions, we observed that the highest vanillin percentage was present after vanilla pods were killed three times in 65 °C treatments for 1 min each. From the experiment examining the addition of different strains, the PCA results revealed that the volatiles of vanilla that was processed with Dekkera bruxellensis and Bacillus subtilis was clearly distinguished from which obtained by processing with the other strains. Vanilla processed with B. subtilis contained 2-ethyl-1-hexanol, and this was not detected in other vanillas. Finally, when comparing the vanillin percentage from seven different regions in Taiwan, vanilla percentage from Taitung and Taoyuan Longtan were the highest.  相似文献   

12.
A novel molecularly imprinted polymer (MIP) for vanillin was prepared by photo initiated polymerization in dichloromethane using a mixed semi-covalent and non-covalent imprinting strategy. Taking polymerisable syringaldehyde as “dummy” template, acrylamide was chosen as functional monomer on B3LYP/6-31+G(d,p) density functional theory computational method basis with counterpoise. The binding parameters for the recognition of vanillin on imprinted polymers were studied with three different isotherm models (Langmuir, bi-Langmuir and Langmuir–Freundlich) and compared. The results indicate an heterogeneity of binding sites. It was found and proved by DFT calculations that the specific binding of vanillin in the cavities is due to non-covalent interactions of the template with the hydroxyphenyl- and the amide-moieties. The binding geometry of vanillin in the MIP cavity was also modelled. The obtained MIP is highly specific for vanillin (with an imprinting factor of 7.4) and was successfully applied to the extraction of vanillin from vanilla pods, red wine spike with vanillin, natural and artificial vanilla sugar with a recovery of 80%.  相似文献   

13.
A method is described for determining coumarin, vanillin, and ethyl vanillin in vanilla extract products. A product is diluted one-thousand-fold and then analyzed by reversed-phase liquid chromatography using a C18 column and a mobile phase consisting of 55% acetonitrile-45% aqueous acetic acid (1%) solution at a flow rate of 1.0 mL/min. Peaks are detected with a UV detector set at 275 nm. Vanilla extracts were spiked with 250, 500, and 1000 microg/g each of coumarin, vanillin, and ethyl vanillin. Recoveries averaged 97.4, 97.8, and 99.8% for coumarin, vanillin, and ethyl vanillin, respectively, with coefficient of variation values of 1.8, 1.3, and 1.3%, respectively. No significant difference was observed among the 3 spiking levels. A survey of 23 domestic and imported vanilla extract products was conducted using the method. None of the samples contained coumarin. The surveyed samples contained between 0.4 to 13.1 and 0.4 to 2.2 mg/g vanillin and ethyl vanillin, respectively.  相似文献   

14.
Abstract

High performance silica gel TLC was used to qualitatively and quantitatively determine coumarin in real and artificial vanilla flavorings. Coumarin was detected as a fluorescent or colored zone and quantified by scanning with a densitometer. Recoveries and reproducibility values are reported for fortified samples. The method was applied to a qualitative survey of domestic vanilla samples and quantification of coumarin in an adulterated foreign sample. The result of this determination was verified by standard addition analysis. The method was also applied to the determination of coumarin in a spiked wine sample.  相似文献   

15.
The results of collaborative study are reported for a method that determines the site-specific isotope ratios of deuterium/hydrogen (D/H)i in vanillin by deuterium-nuclear magnetic resonance (2H-NMR) spectrometry. This method allows characterization of all the main commercial sources of commercial vanillin and detection of undeclared mixtures. It is based on the fact that the amounts of deuterium at various positions in the vanillin molecule are significantly different from one source to another. Vanillin is dissolved in acetonitrile and analyzed with a high-field NMR spectrometer fitted with a deuterium probe and a fluorine lock. The proportions of isotopomers monodeuterated at each hydrogen position of the molecule are recorded, and the corresponding (D/H) ratios are determined by using a calibrated reference. Nine laboratories analyzed 5 materials supplied as blind duplicates (1 natural vanillin from vanilla beans, 2 synthetic vanillins from guaiacol, 1 semisynthetic vanillin from lignin, and a mixture of natural and synthetic vanillins). The precision of the method for measuring site-specific ratios was as follows: for (D/H)1 the within-laboratory standard deviation (Sr) values ranged from 2.2 to 5.8 ppm, and the among-laboratories standard deviation (sR) values ranged from 3.6 to 5.1 ppm; for (D/H)3 the Sr values ranged from 1.7 to 3.2 ppm, and the SR values ranged from 2.4 to 3.7 ppm; for (D/H)4 the Sr values ranged from 2.3 to 6.2 ppm, and the SR values ranged from 2.4 to 6.4 ppm; for (D/H)5 the Sr values ranged from 0.8 to 2.7 ppm, and the SR values ranged from 0.9 to 2.3 ppm. It was shown that these values allow a satisfactory discrimination between vanillin sources. Therefore, the Study Director recommends the method for adoption as a First Action Official Method by AOAC INTERNATIONAL.  相似文献   

16.
A commercially available and disposable multiwalled carbon nanotube screen‐printed electrode (CNT‐SPE) was employed to detect and determine vanillin compounds in natural vanilla. The voltammetric behaviour of vanillin at the CNT‐SPE is examined and shown to be a sensitive method for quantifying vanillin. Linear calibration for vanillin in the range of 2.5–750 μM was obtained with a detection limit of 1.03 μM and a quantification limit of 3.44 μM. The developed method comprises a simple sample preparation method and a sensitive electrochemical detection for the quantification of vanillin in vanilla pods and is an easy and simple procedure for manufacturers and consumers.  相似文献   

17.
Vanilla bean is a valuable food additive used in many branches of food industry as a source of natural vanillin. The influence of60Co -radiation in the dose range of 5–50 kGy has been investigated on: (1) the survival of contaminating microflora, and (2) more important vanilla constituents like vanillin and sugars. It has been found that the main vanilla contamination is connected with mesophylic microorganisms in the amount of 8.4·104/g. The dose of 15 kGy is sufficient for decontamination of commercial raw material. The samples under investigation on account of sensory properties and chemical composition were in agreement with country regulations. Doses up to 50 kGy do not cause undesirable changes in the content of sugars and vanillin, which has been confirmed by studies on model compounds.  相似文献   

18.
A simple and fast method was developed using RP-HPLC for separation and quantitative determination of vanillin and related phenolic compounds in ethanolic extract of pods of Vanilla planifolia. Ten phenolic compounds, namely 4-hydroxybenzyl alcohol, vanillyl alcohol, 3,4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, vanillic acid, 4-hydroxybenzaldehyde, vanillin, p-coumaric acid, ferulic acid, and piperonal were quantitatively determined using ACN, methanol, and 0.2% acetic acid in water as a mobile phase with a gradient elution mode. The method showed good linearity, high precision, and good recovery of compounds of interest. The present method would be useful for analytical research and for routine analysis of vanilla extracts for their quality control.  相似文献   

19.
The composition of methanol extracts of Spice aromatic smoking blends was studied by chromatography-mass spectrometry. The following compounds from the group of new synthetic cannabinoids were identified: 1-pentyl-3-(1-naphthoyl)indol, 1-butyl-3-(1-naphthoyl)indol, 1-hexyl-3-(1-naphthoyl)indol, and 3-[4-(1,1-dimethyloctyl)-2-hydroxyphenyl]cyclohexan-1-ol and its optical isomer. The smoking blends also contained caffeine, glycerol, vitamin E, vanillin, ethylvanillin, and menthol.  相似文献   

20.
Traditional catalytic procedures for oxidation of phenol produce environmentally undesirable wastes. As a consequence, there is a clear demand for development of an environmentally benign catalytic route for the selective oxidation of phenol. A series of zeolite-Y enslaved Mn(III) complexes with Schiff bases derived from vanillin furoic-2-carboxylic acid hydrazone (VFCH), vanillin thiophene-2-carboxylic acid hydrazone (VTCH), ethylvanillin thiophene-2-carboxylic acid hydrazone (EVTCH), and/or ethylvanillin furoic-2-carboxylic acid hydrazone have been synthesized and characterized by physico-chemical techniques. Catalytic oxidations of phenol using 30% H2O2 as an oxidant over [Mn(VTCH)2·2H2O]+-Y, [Mn(VFCH)2·2H2O]+-Y, and [Mn(EVTCH)2·2H2O]+-Y under mild conditions were studied. These zeolite-Y enslaved Mn(III) complexes are stable and recyclable under current reaction conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号