首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reversible addition-fragmentation chain transfer polymerization at 70 °C in N,N-dimethylformamide was used to prepare poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) copolymers in various compositions to afford well-defined polymers with pre-determined molecular weight, narrow molecular weight distribution, and precise chain end structure. The copolymer compositions were determined by 1H NMR spectroscopy. The reactivity ratios of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were calculated as r NIPAM = 0.838 and r DMA = 1.105, respectively, by the extended Kelen–Tüdös method at high conversions. The lower critical solution temperature of PNIPAM can be altered by changing the DMA content in the copolymer chain. Differential scanning calorimetry and thermogravimetric analysis at different heating rates were carried out on these copolymers to understand the nature of thermal degradation and to determine its kinetics. Different kinetic models were applied to estimate various parameters like the activation energy, the order, and the frequency factor. These studies are important to understand the solid state polymer degradation of N-alkyl substituted polymers, which show great potential in the preparation of miscible polymer blends due to their ability to interact through hydrogen bonding.  相似文献   

2.
Poly(N-isopropylacrylamide) (PNIPAM) and random copolymers of Poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNIPAM-HEMA), poly(N-isopropylacrylamide-co-acrylamide) (PNIPAM-AAm), and poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide) (PNIPAM-DMAA) with various volume fractions γ of NIPAM were synthesized by radical polymerization. The phase behavior of the polymers in water was investigated by means of optical transmittance and dynamic light scattering. With decreasing γ, the cloud point temperature T cp for PNIPAM-HEMA decreased whereas the T cp for both PNIPAM-AAm and PNIPAM-DMAA increased. Increase of hydrodynamic radius around T cp, which resulted from the aggregation of the globules of each polymer, was observed from dynamic light scattering. The relationships between the reciprocal of T cp of the polymer solutions and 1-γ were linear for the three copolymers in the experimental range of 0.65<γ<1. The results are discussed from the aspect of the interaction parameters of copolymer solutions.  相似文献   

3.
Films of poly(ethylacryloylacetate) (PEAA) and poly(acryloylacetone) (PAA) were subjected to UV irradiation (λ = 254 nm) at room temperature. The photoinduced structure transfer from cis-enol onto a diketo forms has been investigated. The structure transfer caused by UV light was found to be slower than for the corresponding process in solution. The spectral investigations (UV, IR) showed reversible process of photoketonization. The results were analyzed in terms of the model for the participation of the trans-enol form in the process of the ketonization. Based on the results obtained, some general conclusions were made about the organization of the units in the polymer chain. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3683–3688, 1997  相似文献   

4.
A temperature-responsive poly(N-isopropylacrylamide-co-N,N'-methylenebisacrylamide) [poly(NIPAAm-co-BIS)] monolith was prepared via a free-radical polymerization technique using an aqueous redox initiator in solution at -12°C. The effect of the % T (total monomer concentration/100 mL) and % C (cross-linker concentration/100 mL) on the visual form was investigated. The effect of the porogen on the pore structure was characterized by SEM. Under the optimum condition, the monolith for HPLC was successfully prepared and its mechanical strength and permeability have been studied. Furthermore, a temperature-dependent resolution of aromatic ketones was achieved using only water as mobile phase. The increasing interaction between solutes and the monolith was observed when temperature increased. The theoretical plate number of every analyte was more than 10(4).  相似文献   

5.
The adsorption, desorption, and growth kinetics as well as the thin film morphology and crystal structure of p-quaterphenyl (4P) grown under ultrahigh vacuum conditions on single crystalline Au(111) have been investigated. Thermal desorption spectroscopy (TDS) reveals two distinct first-order peaks attributed to monolayer desorption followed by a zero-order multilayer desorption. The saturation coverage of the full 4P monolayer has been quantitatively measured with a quartz microbalance to be 8 x 10(13) molecules/cm2. Using low energy electron diffraction the structures of the 0.5 and 1 ML (monolayer) adsorbates have been studied, showing highly regular arrangements of the 4P molecules, which are affected by the (111) surface structure. At the transition from 0.5 to 1 ML a structural compression of the overlayer has been observed. The behavior of thicker 4P films has been investigated by combined TDS-XPS (XPS-x-ray photoelectron spectroscopy). A temperature-induced recrystallization process at about 270 K has been observed for a 7 nm thick 4P film grown at 93 K, corresponding to a transition from a disordered layerlike growth to a crystalline island growth. Ex situ optical microscopy and atomic-force microscopy investigations have revealed needle-shaped 4P islands. Applying x-ray diffraction the crystalline order and epitaxial relationship of the 4P films with 30 nm and 200 nm mean thicknesses have been determined.  相似文献   

6.
The surface morphology of poly(cyano-p-xylylene) thin films of different thicknesses (25–1500 nm or more than 5 μm) that were synthesized by vapor-deposition polymerization on the substrate surface in the temperature range from −22 to +35°C has been studied by atomic force microscopy. The surface topography is quantified through analysis of the height-height correlation function. The surface of all films is characterized by a similar granular morphology with a transverse size of granules of 50–500 nm. The surface morphology changes with the polymerization temperature (the substrate temperature) and the film thickness. The effect of film annealing on its surface morphology is considered. It has been established that annealing at 200°C leads to a change in the surface morphology of the films. Original Russian Text ? A.I. Buzin, D.S. Bartolome, K.A. Mailyan, A.V. Pebalk, S.N. Chvalun, 2006, published in Vysokomolekulyamye Soedineniya, Ser. A, 2006, Vol. 48, No. 9, pp. 1640–1646. This work was supported by the Russian Foundation for Basic Research (project nos. 03-03-32665 and 03-03-32634) and the Russian Science Support Foundation.  相似文献   

7.
Hyperbranching poly(allylamine) (PAAm) and poly(ethylene glycol) (PEG) on silicon and its effect on protein adhesion was investigated. Hyperbranching involves sequential grafting of polymers on a surface with one of the components having multiple reactive sites. In this research, PAAm provided multiple amines for grafting PEG diacrylate. Current methodologies for generating PEG surfaces include PEG-silane monolayers or polymerized PEG networks. Hyperbranching combines the nanoscale thickness of monolayers with the surface coverage afforded by polymerization. A multistep approach was used to generate the silicon-supported hyperbranched polymers. The silicon wafer surface was initially modified with a vinyl silane followed by oxidation of the terminal vinyl group to present an acid function. Carbodiimide activation of the surface carboxyl group allowed for coupling to PAAm amines to form the first polymer layer. The polymers were hyperbranched by grafting alternating PEG and PAAm layers to the surface using Michael addition chemistry. The alternating polymers were grafted up to six total layers. The substrates remained hydrophilic after each modification. Static contact angles for PAAm (32-44 degrees) and PEG (33-37 degrees) were characteristic of the corresponding individual polymer (30-50 degrees for allylamine, 34-42 degrees for PEG). Roughness values varied from approximately 1 to 8 nm, but had no apparent affect on protein adhesion. Modifications terminating with a PEG layer reduced bovine serum albumin adhesion to the surface by approximately 80% as determined by ELISA and radiolabel binding studies. The hyperbranched PAAm and PEG surfaces described in this paper are nanometer-scale, multilayer films capable of reducing protein adhesion.  相似文献   

8.
This paper describes the double phase transition behavior of a thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brush at the surface of a hydrophobic core. Reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropylacrylamide (NIPAM) was conducted by using a hyperbranched polyester (Boltorn H40) based macroRAFT agent. The resultant multiarm star block copolymer (H40-PNIPAM) exists as unimolecular micelles with hydrophobic H40 as the core, densely grafted PNIPAM brush as the shell. A combination of laser light scattering (LLS) and microdifferential scanning calorimetry (micro-DSC) studies of H40-PNIPAM in aqueous solution reveals double phase transitions of the PNIPAM corona, which is in contrast to the fact that free PNIPAM homopolymer in aqueous solution exhibits a lower critical solution temperature (LCST) at approximately 32 degrees C. The first phase transition takes place in the broad temperature range 20-30 degrees C, which can be tentatively ascribed to the n-cluster-induced collapse of the inner region of the PNIPAM brush close to the H40 core; the second phase transition occurs above 30 degrees C, which can be ascribed to the outer region of PNIPAM brush. Employing the RAFT chain extension technique, the inner and outer part of PNIPAM brush were then selectively labeled with pyrene derivatives, respectively; temperature-dependent excimer fluorescence measurements further support the conclusion that the inner part of PNIPAM brush collapses first at lower temperatures, followed by the collapse of the outer part at higher temperatures.  相似文献   

9.
The electrochemical behavior of poly(ferrocenyldimethylsilane-b-dimethylsiloxane) (PFDMS-b-PDMS) films deposited on a glassy carbon electrode was investigated by means of cyclic voltammetry (CV). The influences of the solvent, film thickness, temperature, and PDMS block length in PFDMS-b-PDMS on the electrode process were discussed. It was found that in 0.1 M aqueous LiClO(4) the electrochemical processes of the films on a glassy carbon electrode were complex and have a low rate of electron transport and mass diffusion. The kinetic parameters obtained indicated that the electrode process was controlled by both the electrode reaction and mass diffusion.  相似文献   

10.
A thermoresponsive diblock copolymer, poly(ethyl glycidyl ether)-block-poly(ethylene oxide) (PEGE-b-PEO), is synthesized by successive anionic ring-opening polymerization of ethyl glycidyl ether and ethylene oxide using 2-phenoxyethanol as a starting material, and its solution behavior is elucidated in water. In a dilute 1 wt % solution, the temperature-dependent alteration in the polymer hydrodynamic radius (RH) is measured in the temperature range between 5 and 45 degrees C by pulse-gradient spin-echo NMR and dynamic light scattering. The RH value increased with temperature in two steps, where the first step at 15 degrees C corresponds to the core-shell micelle formation and the second step at 40 degrees C corresponds to the aggregation of the core-shell micelles. The formation of the core-shell micelles is supported by the solubilization of a dye (1,6-diphenyl-1,3,5-hexatriene) in the hydrophobic core, which is recognized for a copolymer solution in the temperature range between 20 and 40 degrees C. In this temperature range, the core-shell micelles and the unimers coexist and the fraction of the former gradually increases with increasing temperature, suggesting equilibrium between the micelles and the unimers. In the concentrated regime (40 wt % solution), the solution forms a gel and the small-angle X-ray scattering measurements reveal the successive formation of hexagonal and lamellar liquid crystal phases with increasing temperature.  相似文献   

11.
Active deicing of technical surfaces, such as for wind turbines and heat exchangers, currently requires the usage of heat or chemicals. Passive coating strategies that postpone the freezing of covering water would be beneficial in order to save costs and energy. One hypothesis is that pyroelectric active materials can achieve this because of the surface charges generated on these materials when they are subject to a temperature change. High-quality poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) thin films with a high crystallinity, prefererd edge-on orientation, low surface roughness, and comprised of the β-analogous ferroelectric phase were deposited by spin-coating. Freezing experiments with a cooling rate of 1 K min−1 were made on P(VDF-TrFE) coatings in order to separate the effect of different parameters such as the poling direction, film thickness, used solvent, deposition process, underlying substrate, and annealing temperature on the achievable supercooling. The topography and the underlying substrate significantly changed the distribution of freezing temperatures of water droplets in contact with these thin films. In contrast, no significant effect of the thickness, morphology, or pyroelectric effect of the as-prepared domain-state on the freezing temperatures was found.  相似文献   

12.
The isothermal crystallization behavior of thin films of isotactic poly(propylene) between plates coated with chromium, Teflon® or gold is studied by polarized light microscopy. At all contact surfaces between poly(propylene) and the other materials, transcrystallinity can be observed and competes with the growth of entities which originate in the bulk phase. The shape of these entities can be described by two intersecting paraboloids.  相似文献   

13.
Self-assembly processes and subsequent photo-cross-linking were used to generate cross-linked, ordered microporous structures on the surfaces of well defined four-arm star-shaped poly(D,L-lactide) (PDLLA) thin films. The four-arm star-shaped PDLLAs were synthesized using an ethoxylated pentaerythritol initiator. Solutions of the PDLLAs were cast in a humid environment, and upon solvent evaporation, ordered honeycomb structures (or breath figures) were obtained. Correlations between molar mass, polymer solution viscosity, and pore dimensions were established. The average pore dimension decreased with increasing polymer solution concentration, and a linear relationship was observed between relative humidity and average pore dimensions. Highly ordered microporous structures were also developed on four-arm star-shaped methacrylate-modified PDLLA (PDLLA-UM) thin films. Subsequent photo-cross-linking resulted in more stable PDLLA porous films. The photo-cross-linked films were insoluble, and the honeycomb structures were retained despite solvent exposure. Free-standing, structured PDLLA-UM thin films were obtained upon drying for 24 h. Ordered microporous films based on biocompatible and biodegradable polymers, such as PDLLA, offer potential applications in biosensing and biomedical applications.  相似文献   

14.
Topart PA  Josowicz M 《Talanta》1994,41(6):909-916
In this paper, the influence of the water content in the acetonitrile/LiClO(4) system on the electrosynthesis and the properties of poly(N-vinylcarbazole), PNVC, films is examined. By using conventional resonant frequency and impedance measurements of an electrochemical quartz crystal microbalance (EQCM), information about the electrochemical, morphological and adhesive properties of the thin conducting films were obtained. By changing the water content of the background electrolyte, the degree of cross-linking (through the vinyl group), the doping level and the morphology of PNVC films vary simultaneously. Two limiting cases of film properties were observed: for less than 10 Vol.% water, a highly doped, porous and cross-linked polymer is synthesized. Above 10 Vol.% water content, a dense and smooth film is deposited. The growth at a constant potential was found to be limited by the diffusion of monomers to the electrode. Films grown from a system containing 20 Vol.% water exhibit better adhesive properties to the substrate than those grown from 2 Vol.% water.  相似文献   

15.
Electrophilic aromatic substitution reactions were studied at poly(p-xylylene) (PPX) film surface-reaction medium interfaces. The extent of the reactions (depth of penetration and degree of substitution) was determined by the interaction of the polymer with the reaction solution. Reaction with chlorosulfonic acid to produce sulfonyl chloride and sulfone functionalities occurred readily in the bulk of PPX, and yields were sensitive to time and temperature. Confinement of this reaction to the PPX surface was achieved by controlling the concentration of the acid. Functionalization of PPX with N-methylol-2-chloroacetamide in sulfuric acid to produce the chloroamidomethylated derivative occurred in high yield and was confined to the surface region of PPX. Hydrolysis of the amide to generate aminomethylated PPX was assessed by XPS and a derivatization reaction. Friedel-Crafts type chemistry (acylation and alkylation reactions) also produced functionalized surfaces, but with lower degrees of substitution than the other two reactions and was strictly surface-confined.  相似文献   

16.
Reaction of poly(succinimide) with a mixture of 5-aminopentanol and 6-aminohexanol produced new thermoresponsive polymers based on biodegradable poly(amino acids)s, poly(N-substituted alpha/beta-asparagine)s, showing a clear LCST in water.  相似文献   

17.
The application of surfactants in the chemical etching of track membranes enables one to control their pore shape. To find out the mechanism of the surfactant action on the track etching in the nanometer range of pore sizes, the adsorption of a nonionic surfactant (polyoxyethyelene-4-nonylphenyl ether) on porous and nonporous poly(ethylene terephthalate) films has been studied. The experimental results have been analyzed in comparison with the data previously obtained on the adsorption of an anionic surfactant on similar films. It has been concluded that the behaviors of anionic and nonionic surfactants in negatively charged pores about 100 nm in radius are strongly different due to the electrostatic exclusion of co-ions from the pores, which is of significance only for compounds dissociating into ions.  相似文献   

18.
19.
Langmuir-Blodgett monolayers of isotactic PMMA exhibit a pressure-induced transition upon compression, that can be described in terms of a two-dimensional crystallization process, analogous to a normal melt crystallization. These water surface crystallized monolayers can be used to prepare highly crystalline thin films of isotactic PMMA with tailor-made orientational characteristics.  相似文献   

20.
The thermodynamic phase behavior and the morphology in thin films of poly(3-hexylthiophene) (P3HT) has been studied using calorimetry, X-ray scattering, and scanning force microscopy (AFM). Around 225 °C a phase transition from the crystalline state to a layered, liquid crystalline structure occurs in regioregular P3HT, while the regiorandom counterpart material is disordered at all temperatures and displays a glass transition temperature Tg–3 °C. Regioregular P3HT is semicrystalline and forms needle or plate like crystallites which in solution cast thin films are oriented with respect to the substrate. Films produced by spin coating display a non-equilibrium structure with reduced order and orientation. Annealing of these films in the liquid crystalline state leads to the formation of a morphology similar to the one observed in solution cast films.
T. Thurn-AlbrechtEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号