首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydromagnetic turbulent shear flow of viscous, incompressible, electrically conducting fluid between two infinite uniformly porous moving parallel planes in the presence of axial and transverse magnetic field has been studied by the semi-empirical method. The expressions for the mean distributions for velocity and magnetic field for turbulent shear flow have been obtained for both the cases. As particular cases, the results have been obtained if the planes are fixed. The solutions obtained when the magnetic field is axial have been shown graphically for turbulent and laminar flows.  相似文献   

2.
Time-dependent solutions are obtained for turbulent flow in a stratified fluid in the presence of a shear field. Within the stated closure assumptions, it is shown that for certain shear fields that the turbulent intensity is enhanced.  相似文献   

3.
超声速层流/湍流压缩拐角流动结构的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
武宇  易仕和  陈植  张庆虎  冈敦殿 《物理学报》2013,62(18):184702-184702
Ma=3.0的超声速风洞中, 分别对上游边界层为超声速层流和湍流, 压缩角度为25°和28°的压缩拐角流动进行了实验研究. 采用纳米粒子示踪平面激光散射(NPLS)技术获得了流场整体和局部区域的精细结构, 边界层、剪切层、分离激波、回流区和再附激波等典型结构清晰可见, 测量了超声速层流压缩拐角壁面的压力系数. 从时间平均的流场结构中测量出分离激波、再附激波的角度和再附后重新发展的边界层的增长情况, 通过分析时间相关的流场NPLS图像, 可以发现流场结构随时间的演化特性. 实验结果表明: 在25°的压缩角度下, 超声速层流压缩拐角流动发生了典型的分离, 边界层迅速增长失稳转捩, 并引起一道诱导激波, 流场中出现了K-H涡、剪切层和微弱压缩波结构, 而超声速湍流压缩拐角流动没有出现分离, 湍流边界层始终表现为附着状态; 在28° 的压缩角度下, 超声速层流压缩拐角流动进一步分离, 回流区范围明显扩大, 诱导激波、分离激波向上游移动, 再附激波向下游移动, 分离区流动结构复杂, 相比之下, 超声速湍流压缩拐角流动的回流区范围明显较小, 边界层增长缓慢, 流场中没有出现诱导激波、K-H涡和压缩波, 流动分离区域的结构也相对简单, 但分离激波的强度则明显更强. 关键词: 压缩拐角 层流 湍流 流动结构  相似文献   

4.
We study turbulent flow of a conducting liquid in a uniform external magnetic field. It is shown that intense helicity generation is possible in the presence of a mean shear flow. It is noted that even though the mean helicity of the initial flow can be zero, the presence of internal topological structure of the flow, for example the presence of helicity of different signs at different scales, is nevertheless necessary for helicity generation. Zh. éksp. Teor. Fiz. 114, 946–955 (September 1998)  相似文献   

5.
高马赫数可压缩湍流的运动是一个多尺度多过程的物理现象。采用了多过程分解的方法,将可压缩湍流分解为剪切和胀压过程,分析其统计行为和动力学行为。发展了一种新的紧致差分和WENO格式相结合的混合型数值格式,准确模拟了可压缩湍流场;研究了其多尺度多过程行为和对粒子的输运影响;研究了激波结构对湍流场的影响;在高雷诺数可压缩湍流中,证明存在惯性区,其中流运动和压力做功引起的动能流通量都是常数;证明可压缩湍流中存在从大尺度到小尺度的动能级串过程;证明动能流通量的剪切部分和胀压部分在惯性区都为常数;分析亚格子应力项和亚格子质量流动项对动能级串的影响。  相似文献   

6.
高马赫数可压缩湍流的运动是一个多尺度多过程的物理现象。采用了多过程分解的方法,将可压缩湍流分解为剪切和胀压过程,分析其统计行为和动力学行为。发展了一种新的紧致差分和WENO格式相结合的混合型数值格式,准确模拟了可压缩湍流场;研究了其多尺度多过程行为和对粒子的输运影响;研究了激波结构对湍流场的影响;在高雷诺数可压缩湍流中,证明存在惯性区,其中流运动和压力做功引起的动能流通量都是常数;证明可压缩湍流中存在从大尺度到小尺度的动能级串过程;证明动能流通量的剪切部分和胀压部分在惯性区都为常数;分析亚格子应力项和亚格子质量流动项对动能级串的影响。  相似文献   

7.
The effect of flow shear on turbulent transport in tokamaks is studied numerically in the experimentally relevant limit of zero magnetic shear. It is found that the plasma is linearly stable for all nonzero flow shear values, but that subcritical turbulence can be sustained nonlinearly at a wide range of temperature gradients. Flow shear increases the nonlinear temperature gradient threshold for turbulence but also increases the sensitivity of the heat flux to changes in the temperature gradient, except over a small range near the threshold where the sensitivity is decreased. A bifurcation in the equilibrium gradients is found: for a given input of heat, it is possible, by varying the applied torque, to trigger a transition to significantly higher temperature and flow gradients.  相似文献   

8.
We provide a theory of dynamo (alpha effect) and momentum transport in three-dimensional magnetohydrodynamics. For the first time, we show that the alpha effect is reduced by the shear even in the absence of magnetic field. The alpha effect is further suppressed by magnetic fields well below equipartition (with the large-scale flow) with different scalings depending on the relative strength of shear and magnetic field. The turbulent viscosity is also found to be significantly reduced by shear and magnetic fields, with positive value. These results suggest a crucial effect of shear and magnetic field on dynamo quenching and momentum transport reduction, with important implications for laboratory and astrophysical plasmas, in particular, for the dynamics of the Sun.  相似文献   

9.
We reconsider the important question of the effect of a strong mean shear flow on the transport of a passive scalar field. By incorporating the effect of resonance, we show that the flux scales with the mean shear Omega as Omega(-1). The results also indicate that the scaling of the flux and cross phase with shear is rather weak and that the cross phase is not always more heavily suppressed than the amplitude of the turbulence. Furthermore, we show that the scalings of flux and cross phase with Omega depend on the statistics of the turbulent flow.  相似文献   

10.
Mean and fluctuating wall shear stress is measured in strongly disrupted cases generated by various low-porosity wall-mounted single- and multi-scale fences. These grids generate a highly turbulent wake which interacts with the wall-bounded flow modifying the wall shear stress properties. Measurement methods are validated first against a naturally growing zero pressure gradient turbulent boundary layer showing accuracies of 1% and 4% for extrapolation and direct measurement of the mean shear stress respectively. Uncertainty associated with the root mean square level of the fluctuations is better than 2% making it possible to measure small variations originating from the different fences. Additionally, probability density functions and spectra are also measured providing further insight into the flow physics. Measurement of shear stress in the disrupted cases (grid+TBL) suggest that the flow characteristics and turbulence mechanisms remain unaltered far from the grid even in the most disrupted cases. However, a different root mean square level of the fluctuations is found for different grids. Study of the probability density functions seem to imply that there are different degrees of interaction between the inner and outer regions of the flow.  相似文献   

11.
A theory of turbulent transport is presented in two-dimensional magnetohydrodynamics with background shear and magnetic fields. We provide theoretical predictions for the transport of magnetic flux, momentum, and particles and turbulent intensities, which show stronger reduction compared with the hydrodynamic case, with different dependences on shearing rate, magnetic field, and values of viscosity, Ohmic diffusion, and particle diffusivity. In particular, particle transport is more severely suppressed than momentum transport, effectively leading to a more efficient momentum transport. The role of magnetic fields in quenching transport without altering the amplitude of flow velocity and in inhibiting the generation of shear flows is elucidated. Implications of the results are discussed.  相似文献   

12.
13.
《Physics letters. A》1997,228(6):408-416
The flash response of luminescent plankton is studied in laminar and turbulent pipe flow. Maximum intensity levels of individual plankton are nearly constant for wall shear stress values exceeding approximately 10 dyn cm−2 - regardless of the nature of the flow. This result necessitates a reevaluation of previous inferences made about the stimulating flow field.  相似文献   

14.
Nonlinear gyrokinetic simulations are conducted to investigate turbulent transport in tokamak plasmas with rotational shear. At sufficiently large flow shears, linear instabilities are suppressed, but transiently growing modes drive subcritical turbulence whose amplitude increases with flow shear. This leads to a local minimum in the heat flux, indicating an optimal E×B shear value for plasma confinement. Local maxima in the momentum fluxes are observed, implying the possibility of bifurcations in the E×B shear. The critical temperature gradient for the onset of turbulence increases with flow shear at low flow shears; at higher flow shears, the dependence of heat flux on temperature gradient becomes less stiff. The turbulent Prandtl number is found to be largely independent of temperature and flow gradients, with a value close to unity.  相似文献   

15.
The numerical model of momentumless turbulent wake in a horizontally homogeneous shear flow of linearly stratified medium has been constructed. Based on this model, the investigation of the wake dynamics has been performed. The obtained data demonstrate the transformation of the zone of turbulent perturbations and internal waves generated by the wake under the action of shear flow, which leads to the deceleration of turbulence decay at large time values after the body passage.  相似文献   

16.
《Physics letters. A》2020,384(9):126184
H-modes induced by sawtooth events can be often observed in discharges with marginal auxiliary power injection in EAST. Poloidal flow shear at the very plasma edge, increasing ∼25% up to the threshold value, is observed just before the L-H transition by means of a fast reciprocating probe array in EAST. This suddenly risen poloidal flow shear, caused by the increased turbulent driven Reynolds force, is motived by the heat pulse originally released by a sawtooth crash at the plasma core. Associated with the critical poloidal flow shear, the local turbulent decorrelation rate increases significantly. The increased turbulent decorrelation rate compensated by nonlinear energy transfer rate from the turbulence to the low-frequency shear flows, exceeding the turbulence energy input rate, is sustained for several hundred microseconds till the turbulence quench happening.  相似文献   

17.
Based on earlier studies by Hopf (1941), Doering and Constantin (1992, 1994, 1995) have recently formulated a new “background” technique for obtaining upper bounds on turbulent fluid flow quantities. This method produces upper bounds on the limit supremum of long time averages, making no statistical assumptions about the flow in contrast to the well-known Howard-Busse approach. The full optimisation problems posed by this method for the momentum transport in turbulent Couette flow and the heat transport (with zero background flow) in turbulent Boussinesq convection are solved here for the first time at asymptotically large Reynolds number and Rayleigh number within Busse's multiple boundary layer approximation to extract the best (lowest) possible upper bounds available. Intriguingly, the original bounds isolated by Busse (1969, 1970) within the confines of statistical stationarity are recovered exactly using this new formalism. The optimal background velocity profile for turbulent Couette flow is found to be shearless in the interior thus differing from Busse's “ ” mean shear result. In the convective case, an interesting degeneracy in the formulation of the background variational problem leads to an indeterminacy in the optimal background temperature profile. Only for one special choice is the isothermal core feature of Busse's mean profile recovered.  相似文献   

18.
19.
Large scale transport events are studied in simulations of resistive ballooning turbulence in a tokamak plasma. The spatial structure of the turbulent flux is analyzed, indicating radially elongated structures (streamers) at the low field side which are distorted by magnetic shear at different toroidal positions. The interplay between self-generated zonal flows and transport events is investigated, resulting in significant modifications of the frequency and the amplitude of bursts. The propagation of bursts is studied in the presence of a transport barrier generated by a strong shear flow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号