首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzene-1,3,5-tri-carboxylic acid (trimesic acid, TMA) coated on basic alumina has been shown to be an effective adsorbent for Fe(III) and Fe(II) from aqueous solution. A comparative study on the adsorption of Fe(III) and Fe(II) revealed that TMA coated alumina is more selective towards Fe(III) than Fe(II). The maximum adsorptions of Fe(III) and Fe(II) were 26.6 mg/g and 8.4 mg/g, respectively. Fe(III)/Fe(II) adsorption was also compared in some cases with adsorption of Co(II) and Ni(II). Maximum uptakes (Qm) for Co(II) and Ni(II) were found much lower (approximately 1 mg/g) than Fe(III)/Fe(II). pH dependent studies have revealed that Fe(III) was adsorbed efficiently at high acidic condition (pH approximately 1.5) compared to Fe(II), Co(II) and Ni(II), while temperature did not have significant effect on the adsorption processes. Adsorption of Fe(III) and Fe(II) was quite rapid and thermodynamically favourable. Adsorption processes fitted well in Langmuir isotherm model and followed second order rate kinetics in all cases.  相似文献   

2.
Dadone A  Baffi F  Frache R 《Talanta》1976,23(8):593-595
The cation-exchange behaviour of Mn(II), Cd(II), Co(II), Ni(II), Cu(II), Al(III) and Fe(III), in tartaric acid media was studied. Separations of Fe(III), Cu(II), Ni(II), Co(II), Cd(II) and Mn(II) on Dowex 50W X8 have been achieved.  相似文献   

3.
The molecular parameters have been calculated to confirm the geometry of 3-methyl-5-oxo-N,1-diphenyl-4,5-dihydro-1-H-pyrazole-4-carbothioamide, HL. The compound is introduced as a new chelating agent for complexation with Cr(III), Fe(III), Co(II), Ni(II) and Cu(II) ions. The isolated chelates were characterized by partial elemental analyses, magnetic moments, spectra (IR, UV–vis, ESR; 1H NMR) and thermal studies. The protonation constant of HL (5.04) and the stepwise stability constants of its Co(II), Cu(II), Cr(III) and Fe(III) complexes were calculated. The ligand coordinates as a monobasic bidentate through hydroxo and thiol groups in all complexes except Cr(III) which acts as a monobasic monodentate through the enolized carbonyl oxygen. Cr(III) and Fe(III) complexes measured normal magnetic moments; Cu(II) and Co(II) measured subnormal while Ni(II) complex is diamagnetic. The data confirm a high spin and low spin octahedral structures for the Fe(III) and Co(II) complexes. The ESR spectrum of the Cu(II) complex support the binuclear structure. The molecular parameters have also been calculated for the Cu(II) and Fe(III) complexes. The thermal decomposition stages of the complexes confirm the MS to be the residual part. Also, the thermodynamic and kinetic parameters were calculated for some decomposition steps.  相似文献   

4.
The heterotrinuclear complexes trans- and cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) are unprecedented examples of mixed valence complexes based on ferrocyanide bearing three different metal centers. These complexes have been assembled in a stepwise manner from their {trans-III-L(14S)Co(III)}, {cis-VI-L(15)Rh(III)}, and {Fe(II)(CN)(6)} building blocks. The preparative procedure follows that found for other known discrete assemblies of mixed valence dinuclear Cr(III)/Fe(II) and polynuclear Co(III)/Fe(II) complexes of the same family. A simple slow substitution process of [Fe(II)(CN)(6)](4-) on inert cis-VI-[Rh(III)L(15)(OH)](2+) leads to the preparation of the new dinuclear mixed valence complex [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) with a redox reactivity that parallels that found for dinuclear complexes from the same family. The combination of this dinuclear precursor with mononuclear trans-III-[Co(III)L(14S)Cl](2+) enables a redox-assisted substitution on the transient {L(14S)Co(II)} unit to form [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+). The structure of the final cis-[{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) complex has been established via X-ray diffraction and fully agrees with its solution spectroscopy and electrochemistry data. The new species [{cis-VI-L(15)Rh(III)(μ-NC)}{trans-III-L(14S)Co(III)(μ-NC)}Fe(II)(CN)(4)](2+) and [{cis-VI-L(15)Rh(III)(μ-NC)}Fe(II)(CN)(5)](-) show the expected electronic spectra and electrochemical features typical of Class II mixed valence complexes. Interestingly, in the trinuclear complex, these features appear to be a simple addition of those for the Rh(III)/Fe(II) and Co(III)/Fe(II) moieties, despite the vast differences existent in the electronic spectra and electrochemical properties of the two isolated units.  相似文献   

5.
Stability constants for Al(III), Cd(II), Co(II), Cu(II), Fe(III), Hg(II), La(III), Nd(III), Er(III), Mg(II). Mn(II), Ni(II), Pb(II), Th(IV) and Zn(II) complexes of triethylenetetraminehexaacetic acid (TTHA) have been evaluated from data obtained by pH and pM measurements. The pM method based on measurements with the mercury electrode and the redox system Fe(III)/Fe(II) proved to be very useful when binuclear complexes are formed.  相似文献   

6.
"Tritopic" picolinic dihydrazone ligands with tridentate coordination pockets are designed to produce homoleptic [3 x 3] nonanuclear square grid complexes on reaction with transition-metal salts, and many structurally documented examples have been obtained with Mn(II), Cu(II), and Zn(II) ions. However, other oligomeric complexes with smaller nuclearities have also been discovered and identified structurally in some reactions involving Fe(II), Co(II), Ni(II), and Cu(II), with certain tritopic ligands. This illustrates the dynamic nature of the metal-ligand interaction and the conformationally flexible nature of the ligands and points to the possible involvement of some of these species as intermediates in the [3 x 3] grid formation process. Examples of mononuclear, dinuclear, hexanuclear, heptanuclear, and nonanuclear species involving Fe(II), Co(II), Ni(II), and Cu(II) salts with a series of potentially heptadentate picolinic dihydrazone ligands with pyrazine, pyrimidine, and pyridine end groups are described in the present study. Iron and cobalt complexation reactions are complicated by redox processes, which lead to mixed-oxidation-state Co(II)/Co(III) systems when starting with Co(II) salts, and reduction of Fe(III) to Fe(II) when starting with Fe(III). Magnetic exchange within the polynuclear structural frameworks is discussed and related to the structural features.  相似文献   

7.
Summary The cation-exchange behaviour of Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II), Fe(III), Sc(III), Y(III), Eu(III), Dy(III), Ho(III), Yb(III), Ti(IV) and Nb(V) in malate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the ammonium form. Separation of Fe(III)/Cu(II), Fe(III)/Cu(II)/Zn(II), Fe(III)/Co(II)/Mn(II), Cu(II)/Ni(II)/Mn(II), Fe(III)/Cu(II)/Co(II)/Mn(II), Fe(III)/Cu(II)/Ni(II)/Cd(II), Yb(III)/Eu(III), Sc(III)/Y(III),Sc(III)/Yb(III)/Dy(III) and Nb(V)/Yb(III)/Ho(III) has been achieved, among others.This work was supported by C.N.R. of Italy.  相似文献   

8.
The transition metals ions Cr(III), Mn(II), Fe(III), Co(II), Ni(II), and Zn(II) in addition to Ca(II) have been used as modifiers in the determination of silicon using electrothermal Zeeman atomic absorption spectrometry. Co(II) proved to be the best. Graphite tubes treated with zirconium, in the presence of Co(II) as a modifier, exhibit higher sensitivity by a factor of five than untreated tubes. The modifier concentration and ashing and atomization temperatures have been optimized. Also interference of different inorganic cations and anions was studied.  相似文献   

9.
In from the cold: The Co(III) Fe(II) state of a CoFe Prussian blue analogue undergoes a Co(III) ?Fe(II) →(Co(II) ?Fe(III) )* electron transfer at room temperature when irradiated by visible light (532?nm; see scheme). This property was confirmed using energy-dispersive X-ray absorption spectroscopy at the Co and Fe K-edges of the piezo-induced Co(III) Fe(II) state.  相似文献   

10.
The extraction of the following metals from aqueous solutions containing excess bromide with methyl ethyl ketone (MEK), and methyl isobutyl ketone MIBK has been investigated:—Cu(I), Cu(II), Zn(II), Ni(II), Co(II), Fe(II), Fe(III), Al(III), Mn(II), Sn(II) and Sn(IV). The use of MEK was found to be strictly limited by its solubility in acidic aqueous solutions. Determinations of the formulae of the extracted compounds were attempted in two cases but were found to be not wholly satisfactory and were discontinued. An interesting reaction between the cupric bromide complex and the solvents was noticed. Separations of Fe(IIl) from Mn(II), Fe(III) from Al(III), Fe(III) from Co(Il) and Fe(III) from Ni(II) could be achieved under suitable conditions.  相似文献   

11.
Conradie J  Ghosh A 《Inorganic chemistry》2006,45(13):4902-4909
DFT(PW91/TZP) calculations, including full geometry optimizations, have been carried on [FeII(P)(NO2)]-, Fe(III)(P)(NO2), [Fe(II)(P)(NO2)(py)]-, Fe(III)(P)(NO2)(py), [Fe(III)(P)(NO2)2]-, and Fe(III)(P)(NO2)(NO), where P is the unsubstituted porphine dianion, as well as on certain picket fence porphyrin (TPivPP) analogues. The bonding in [Fe(II)(P)(NO2)]- and Fe(III)(P)(NO2), as well as in their pyridine adducts, reveals a sigma-donor interaction of the nitrite HOMO and the Fe dz2 orbital, where the Fe-Nnitro axis is defined as the z direction and the nitrite plane is identified as xz. Both molecules also feature a pi-acceptor interaction of the nitrite LUMO and the Fe dyz orbital, whereas the SOMO of the Fe(III)-nitro complexes may be identified as dxz. The Fe(III)-nitro porphyrins studied all exhibit extremely high adiabatic electron affinities, ranging from about 2.5 eV for Fe(III)(P)(NO2) and Fe(III)(P)(NO2)(py) to about 3.4 eV for their TPivPP analogues. Transition-state optimizations for oxygen-atom transfer from Fe(III)(P)(NO2) and Fe(III)(P)(NO2)(py) to dimethyl sulfide yielded activation energies of 0.45 and 0.77 eV, respectively, which is qualitatively consistent with the observed far greater stability of Fe(III)(TPivPP)(NO2)(py) relative to Fe(III)(TPivPP)(NO2). Addition of NO to yield {FeNO}6 nitro-nitrosyl adducts such as Fe(P)(NO2)(NO) provides another mechanism whereby Fe(III)-nitro porphyrins can relieve their extreme electron affinities. In Fe(P)(NO2)(NO), the bonding involves substantial Fe-NO pi-bonding, but the nitrite acts essentially as a simple sigma-donor, which accounts for the relatively long Fe-Nnitro distance in this molecule.  相似文献   

12.
Two new dinucleating ligands 1,2,4,5-tetrakis(2-pyridinecarboxamido)benzene, H(4)(tpb), and 1,2,4,5-tetrakis(4-tert-butyl-2-pyridinecarboxamido)benzene, H(4)(tbpb), have been synthesized, and the following dinuclear cyano complexes of cobalt(III) and iron(III) have been isolated: Na(2)[Co(III)(2)(tpb)(CN)(4)] (1); [N(n-Bu)(4)](2)[Co(III)(2)(tbpb)(CN)(4)] (2); [Co(III)(2)(tbpb(ox2))(CN)(4)] (3); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(N(3))(4)] (4); [N(n-Bu)(4)](2)[Fe(III)(2)(tpb)(CN)(4)] (5); [N(n-Bu)(4)](2)[Fe(III)(2)(tbpb)(CN)(4)] (6). Complexes 2-4 and 6 have been structurally characterized by X-ray crystallography at 100 K. From electrochemical and spectroscopic (UV-vis, IR, EPR, M?ssbauer) and magnetochemical investigations it is established that the coordinated central 1,2,4,5-tetraamidobenzene entity in the cyano complexes can be oxidized in two successive one-electron steps yielding paramagnetic (tbpb(ox1))(3)(-) and diamagnetic (tbpb(ox2))(2)(-) anions. Thus, complex 6 exists in five characterized oxidation levels: [Fe(III)(2)(tbpb(ox2))(CN)(4)](0) (S = 0); [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Fe(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Fe(III)Fe(II)(tbpb)(CN)(4)](3)(-) (S = (1)/(2)); [Fe(II)(2)(tbpb)(CN)(4)](4)(-) (S = 0). The iron(II) and (III) ions are always low-spin configurated. The electronic structure of the paramagnetic iron(III) ions and the exchange interaction of the three-spin system [Fe(III)(2)(tbpb(ox1))(CN)(4)](-) are characterized in detail. Similarly, for 2 three oxidation levels have been identified and fully characterized: [Co(III)(2)(tbpb)(CN)(4)](2)(-) (S = 0); [Co(III)(2)(tbpb(ox1))(CN)(4)](-) (S = (1)/(2)); [Co(III)(2)(tbpb(ox2))(CN)(4)](0). The crystal structures of 2 and 3 clearly show that the two electron oxidation of 2 yielding 3 affects only the central tetraamidobenzene part of the ligand.  相似文献   

13.
A series of bimetallic, trigonal bipyramidal clusters of type {[Co(N-N)(2)](3)[Fe(CN)(6)](2)} are reported. The reaction of {Co(tmphen)(2)}(2+) with [Fe(CN)(6)](3)(-) in MeCN affords {[Co(tmphen)(2)](3)[Fe(CN)(6)](2)} (1). The cluster can exist in three different solid-state phases: a red crystalline phase, a blue solid phase obtained by exposure of the red crystals to moisture, and a red solid phase obtained by desolvation of the blue solid phase in vacuo. The properties of cluster 1 are extremely sensitive to both temperature and solvent content in each of these phases. Variable-temperature X-ray crystallography; (57)Fe Mossbauer, vibrational, and optical spectroscopies; and magnetochemical studies were used to study the three phases of 1 and related compounds, Na{[Co(tmphen)(2)](3)[Fe(CN)(6)](2)}(ClO(4))(2) (2), {[Co(bpy)(2)](3)[Fe(CN)(6)](2)}[Fe(CN)(6)](1/3) (3), and {[Ni(tmphen)(2)](3)[Fe(CN)(6)](2)} (4). The combined structural and spectroscopic investigation of 1-4 leads to the unambiguous conclusion that 1 can exist in different electronic isomeric forms, {Co(III)(2)Co(II)Fe(II)(2)} (1A), {Co(III)Co(II)(2)Fe(III)Fe(II)} (1B), and {Co(II)(3)Fe(III)(2)} (1C), and that it can undergo a charge-transfer-induced spin transition (CTIST). This is the first time that such a phenomenon has been observed for a Co/Fe molecule.  相似文献   

14.
Russian Journal of General Chemistry - Transition metals such as Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) have been reacted with gibberellic acid (HGA) to give novel...  相似文献   

15.
《Analytical letters》2012,45(5):413-422
Abstract

The stepwise metal-ligand stability constants of tetracycline and oxytetraoycline chelates with Mg(II), Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Cu(II), Zn(II), Zr(II) and Sn(II) have been determined using the Bjerrum-Calvin titration technique as employed by Irving and Rossotti. Protonation constant of the ligand and stability constants of the respective metal complexes have been determined at constant temperature (25°C) and ionic strength (0.1 M KCl). The general order of overall stability constant values have been found to be: Zr(IV) > Fe(III) > Co(II) > Zn(II) > Mg(II) > Mn(II) > Ni(II) > Sn(II) > Tn(II) > Cr(II). The rign values of the atability constanta are attricutel to the Ligands, which are stronger as an acid and weaser as a oase.  相似文献   

16.
End-off compartmental pentadentate Schiff base, 2,6-bis[3′-methyl-2′-carboxamidyliminomethyl(6′,7′)benzindole]-4-methylphenol is synthesized and characterized by 2D NMR experiments and mass spectral techniques. The homodinuclear phenalato bridged end-off compartmental Schiff-base complexes Cu(II), Co(II), Ni(II), Mn(II), Fe(III), VO(IV), Zn(II), Cd(II) and Hg(II) have been prepared by the template method using the precursors 2,6-diformyl-4-methylphenol, 3-methyl(6′,7′)-2-benzindolehydrazide and metal chlorides in 1?:?2?:?2 ratio. The complexes are characterized by IR, NMR, UV-vis, FAB-mass, ESR and TGA techniques. Ni(II), Mn(II) and Fe(III) complexes have octahedral geometry, whereas the Cu(II), Co(II), VO(IV), Zn(II), Cd(II) and Hg(II) complexes have square pyramidal geometry. Low magnetic moment values for Cu(II), Co(II), Ni(II), Mn(II), Fe(III) and VO(IV) complexes indicate antiferromagnetic spin-exchange interaction between two metal centers. The metal complexes have been screened for their antibacterial activity against Escherichia coli and Staphyloccocus aureus and antifungal activity against Aspergillus niger and Fusarium oxysporum.  相似文献   

17.
Summary The cation-exchange behaviour of Mg(II), Ca(II), Sr(II), Ba(II), Mn(II), Cd(II), Co(II), Ni(II), Zn(II), Cu(II) and Fe(III) in succinate media at various concentrations and pH, was studied with Dowex 50 WX8 resin (200–400 mesh) in the NH 4 + form. As examples separations of Cd(II)/Co(II), Cd (II)/Ni(II), Fe(III)/Cu(II)/Ni(II) and Mg(II)/Ca(II)/Sr(II)/Ba(II) have been achieved.This work was supported by C.N.R. of Italy.  相似文献   

18.
The reductive nitrosylation (Fe(III)(P) + 2NO + H(2)O = Fe(II)(P)(NO) + NO(2)(-) + 2H(+)) of the ferriheme model Fe(III)(TPPS) (TPPS = tetra(4-sulfonatophenyl)porphyrinato) has been investigated in moderately acidic solution. In the absence of added or adventitious nitrite, this reaction displays general base catalysis with several buffers in aqueous solutions. It was also found that the nitrite ion, NO(2)(-), is a catalyst for this reaction. Similar nitrite catalysis was demonstrated for another ferriheme model system Fe(III)(TMPy) (TMPy = meso-tetrakis(N-methyl-4-pyridyl)porphyrinato), and for ferriheme proteins met-hemoglobin (metHb) and met-myoglobin (metMb) in aqueous buffer solutions. Thus, it appears that such catalysis is a general mechanistic route to the reductive nitrosylation products. Two nitrite catalysis mechanisms are proposed. In the first, NO(2)(-) is visualized as operating via nucleophilic addition to the Fe(III)-coordinated NO in a manner similar to the reactions proposed for Fe(III) reduction promoted by other nucleophiles. This would give a labile N(2)O(3) ligand that hydrolyzes to nitrous acid, regenerating the original nitrite. The other proposal is that Fe(III) reduction is effected by direct outer-sphere electron transfer from NO(2)(-) to Fe(III)(P)(NO) to give nitrogen dioxide plus the ferrous nitrosyl complex Fe(II)(P)(NO). The NO(2) thus generated would be trapped by excess NO to give N(2)O(3) and, subsequently, nitrite. It is found that the nitrite catalysis rates are markedly sensitive to the respective Fe(III)(P)(NO) reduction potentials, which is consistent with the behavior expected for an outer-sphere electron-transfer mechanism. Nitrite is the product of NO autoxidation in aqueous solution and is a ubiquitous impurity in experiments where aqueous NO is added to an aerobic system to study biological effects. The present results demonstrate that such an impurity should not be assumed to be innocuous, especially in the context of recent reports that endogenous nitrite may play physiological roles relevant to the interactions of NO and ferriheme proteins.  相似文献   

19.
In the present communication the ionophoretic technique has been used for the study of Fe(III), Cu(II), Ni(II), and Co(II)-hippuric acid binary and Fe(III), Cu(II), Ni(II), and Co(II)-hippuric acid-NTA ternary complexes (NTA — nitrilotriacetic acid). The stability constants of metal-hippuric acid binary complexes are found to be 103.54, 102.95, 102.77, and 102.70 and the stability constants of metal-hippuric acid-NTA ternary complexes have been found to be 106.16, 106.06, 106.01, and 105.90 for Fe(III), Cu(II), Ni(II), and Co(II) complexes, respectively, at μ = 0.1 M (HClO4) and 25°C.  相似文献   

20.
A series of heterobimetallic complexes of the type [Fe(III)M(II)L(&mgr;-OAc)(OAc)(H(2)O)](ClO(4)).nH(2)O (2-5) and [{Fe(III)Co(III)L(&mgr;-OAc)(OAc)}(2)(&mgr;-O)](ClO(4))(2).3H(2)O (6) where H(2)L is a tetraaminodiphenol macrocyclic ligand and M(II) = Zn(2), Ni(3), Co(4), and Mn(5) have been synthesized and characterized. The (1)H NMR spectrum of 6 exhibits all the resonances between 1 and 12 ppm. The IR and UV-vis spectra of 2-5 indicate that in all the cases the metal ions have similar coordination environments. A disordered crystal structure determined for 3 reveals the presence of a (&mgr;-acetate)bis(&mgr;-phenoxide)-Ni(II)Fe(III) core, in which the two metal ions have 6-fold coordination geometry and each have two amino nitrogens and two phenolate oxygens as the in-plane donors; aside from the axial bridging acetate, the sixth coordination site of nickel(II) is occupied by the unidentate acetate and that of iron(III) by a water molecule. The crystal structure determination of 6 shows that the two heterobinuclear Co(III)Fe(III) units are bound by an Fe-O-Fe linkage. 6 crystallizes in the orthorhombic space group Ibca with a = 17.577(4) ?, b = 27.282(7) ?, c = 28.647(6) ?, and Z = 8. The two iron(III) centers in 6 are strongly antiferromagnetically coupled, J = -100 cm(-1) (H = -2JS(1).S(2)), whereas the other two S(1) = S(2) = (5)/(2) systems, viz. [Fe(2)(III)(HL)(2)(&mgr;-OH)(2)](ClO(4))(2) (1) and the Fe(III)Mn(II) complex (5), exhibit weak antiferromagnetic exchange coupling with J = -4.5 cm(-1) (1) and -1.8 cm(-1) (5). The Fe(III)Ni(II) (3) and Fe(III)Co(II) (4) systems, however, exhibit weak ferromagnetic behavior with J = 1.7 cm(-1) (3) and 4.2 cm(-1) (4). The iron(III) center in 2-5 exhibits quasi-reversible redox behavior between -0.44 and -0.48 V vs Ag/AgCl associated with reduction to iron(II). The oxidation of cobalt(II) in 4 occurs quasi-reversibly at 0.74 V, while both nickel(II) and manganese(II) in 3 and 5 undergo irreversible oxidation at 0.85 V. The electrochemical reduction of 6 leads to the generation of 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号