首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article models the resource allocation problem in dynamic PERT networks with finite capacity of concurrent projects (COnstant Number of Projects In Process (CONPIP)), where activity durations are independent random variables with exponential distributions, and the new projects are generated according to a Poisson process. The system is represented as a queuing network with finite concurrent projects, where each activity of a project is performed at a devoted service station with one server located in a node of the network. For modeling dynamic PERT networks with CONPIP, we first convert the network of queues into a stochastic network. Then, by constructing a proper finite-state continuous-time Markov model, a system of differential equations is created to solve and find the completion time distribution for any particular project. Finally, we propose a multi-objective model with three conflict objectives to optimally control the resources allocated to the servers, and apply the goal attainment method to solve a discrete-time approximation of the original multi-objective problem.  相似文献   

2.
Time-cost trade-off via optimal control theory in Markov PERT networks   总被引:1,自引:0,他引:1  
We develop a new analytical model for the time-cost trade-off problem via optimal control theory in Markov PERT networks. It is assumed that the activity durations are independent random variables with generalized Erlang distributions, in which the mean duration of each activity is a non-increasing function of the amount of resource allocated to it. Then, we construct a multi-objective optimal control problem, in which the first objective is the minimization of the total direct costs of the project, in which the direct cost of each activity is a non-decreasing function of the resources allocated to it, the second objective is the minimization of the mean of project completion time and the third objective is the minimization of the variance of project completion time. Finally, two multi-objective decision techniques, viz, goal attainment and goal programming are applied to solve this multi-objective optimal control problem and obtain the optimal resources allocated to the activities or the control vector of the problem  相似文献   

3.
We consider the deadline problem and budget problem of the nonlinear time–cost tradeoff project scheduling model in a series–parallel activity network. We develop fully polynomial-time approximation schemes for both problems using K-approximation sets and functions, together with series and parallel reductions.  相似文献   

4.
We apply the stochastic dynamic programming to obtain a lower bound for the mean project completion time in a PERT network, where the activity durations are exponentially distributed random variables. Moreover, these random variables are non-static in that the distributions themselves vary according to some randomness in society like strike or inflation. This social randomness is modelled as a function of a separate continuous-time Markov process over the time horizon. The results are verified by simulation.  相似文献   

5.
An activity-on-arc network project of the PERT type with random activity durations is considered. For each activity, its accomplishment is measured in percentages of the total project. When operated, each activity utilizes resources of a pregiven capacity and no resource reallocation is undertaken in the course of the project's realization. Each activity can be operated at several possible speeds that are subject to random disturbances and correspond to one and the same resource capacity; that is, these speeds depend only on the degree of intensity of the project's realization. For example, in construction projects partial accomplishments are usually measured in percentages of the total project, while different speeds correspond to different hours a day per worker. The number of possible speeds is common to all activities. For each activity, speeds are sorted in ascending order of their average values—namely speeds are indexed. It is assumed that at any moment t>0 activities, in operation at that moment, have to apply speeds of one and the same index that actually determines the project's speed. The progress of the project can be evaluated only via inspection at control points that have to be determined. The project's due date and the chance constraint to meet the deadline are pregiven. An on-line control model is suggested that, at each control point, faces a stochastic optimization problem. Two conflicting objectives are imbedded in the model:(1) to minimize the number of control points, and(2) to minimize the average index of the project's speeds which can be changed only at a control point.At each routine control point, decision-making centers on determining the next control point and the new index of the speeds (for all activities to be operated) up to that point. The model's performance is verified via simulation.The developed on-line control algorithm can be used for various PERT network projects which can be realized with different speeds, including construction projects and R&D projects.  相似文献   

6.
The Program Evaluation and Review Technique (PERT) dates back to 1959. This method evaluates the uncertainty distribution of a project’s completion time given the uncertain completion times of the activities/tasks comprised within it. Each activity’s uncertainty was defined originally by a unique two parameter beta PERT distribution satisfying what is known to be the PERT mean and PERT variance. In this paper, a three-parameter PERT family of bounded distributions is introduced satisfying that same mean and variance, generalizing the beta PERT distribution. Their additional flexibility allows for the modeling of statistical dependence in a continuous Bayesian network, generalizing in turn the traditional PERT procedure where statistical independence is assumed among beta PERT activity durations. Through currently available Bayesian network software and the construction of that PERT family herein, the coherent monitoring of remaining project completion time uncertainty given partial completion of a project may become more accessible to PERT analysts. An illustrative example demonstrating the benefit of monitoring of remaining project completion time uncertainty as activities complete in that Bayesian fashion shall be presented, including expressions and algorithms for the specification of the three prior parameters for each activity in the project network to adhere to classical the PERT mean and PERT variance and a degree of statistical dependence between them.  相似文献   

7.
It is assumed that activity durations in a PERT network are independent and normal random variables. A simple method of obtaining lower and upper bounds for the expected project completion time is described. The tightness of the bounds is examined for some numerical examples. A problem of applying the method in the case of non-normal distributions of activity times is also discussed.  相似文献   

8.
In this paper the problem of determining an upper bound on the expected project completion time, described by the PERT network, is considered. It is assumed that activity durations are independent random variables with given means. The exact forms of probability distributions do not have to be known; however, their cumulative distribution functions are expected to belong to the so-called NBUE class. Very simple algorithms for deriving this bound are presented. The computations can even be performed manually for more involved networks. Our approach producing a pessimistic evaluation of the expected value of the project duration, extends considerably the information obtained through the use of the classical PERT that always underestimates this value. The results are illustrated by a simple example, and errors of approximations are discussed.  相似文献   

9.
航空复杂产品开发项目具有复杂性、随机性、多目标性的特点,并且产品本身小批量、多品种的生产模式使得无法大量积累历史数据。因此,航空复杂产品项目活动时间存在高度的不确定性。如何能够更加合理、准确的描述其项目活动时间,对优化航空复杂产品的研制过程、缩短研制周期以及降低研制成本具有重大的意义。本文在Hahn基于PERT所建立的Beta Rectangular混合分布模型的基础上,保留其期望值的表达式,对其方差表达式进行改进。按照Malcolm、José等人的思想,将最可能值m与Beta分布的众数相对应,并且考虑其对方差的影响。仅保留PERT的一个假设,使方差的推导更多地依照于Beta分布而不是较多的近似。仿真结果表明,改进后的混合分布模型不但更具柔性,而且可以更加科学准确地描述航空复杂产品调度中高度不确定的任务持续时间状况。  相似文献   

10.
Robust portfolio modeling (RPM) [Liesiö, J., Mild, P., Salo, A., 2007. Preference programming for robust portfolio modeling and project selection. European Journal of Operational Research 181, 1488–1505] supports project portfolio selection in the presence of multiple evaluation criteria and incomplete information. In this paper, we extend RPM to account for project interdependencies, incomplete cost information and variable budget levels. These extensions lead to a multi-objective zero-one linear programming problem with interval-valued objective function coefficients for which all non-dominated solutions are determined by a tailored algorithm. The extended RPM framework permits more comprehensive modeling of portfolio problems and provides support for advanced benefit–cost analyses. It retains the key features of RPM by providing robust project and portfolio recommendations and by identifying projects on which further attention should be focused. The extended framework is illustrated with an example on product release planning.  相似文献   

11.
The notion of critical path is a key issue in the temporal analysis of project scheduling in deterministic setting. The very essence of the CPM consists in identifying the critical path, i.e., the longest path in a project network, because this path conveys information on how long it should take to complete the project to the project manager. The problem how can a stochastic counterpart of the deterministic critical path be defined is an important question in stochastic PERT. However, in the literature of stochastic PERT this question has so far almost been ignored, and the research into the random nature of a project duration has mainly been concentrated on the completion time in stochastic PERT in which any concrete special path is not specified. In the present paper we attempt to take first steps to fill this gap. We first developed a probabilistic background theory for univariate and bivariate marginal distributions of path durations of stochastic PERT whose joint path durations are modelled by multivariate normal distribution. Then, a new probabilistic approach to the comparison of path durations is introduced, and based on this comparison we define the concept of probabilistically critical path as a stochastic counterpart of the deterministic critical path. Also, an illustrative simple example of PCP and numerical results on the established probability bounds are presented.  相似文献   

12.
The time/cost trade-off models in project management aim to reduce the project completion time by putting extra resources on activity durations. The budget problem in discrete time/cost trade-off scheduling selects a time/cost mode for each activity so as to minimize the project completion time without exceeding the available budget. There may be alternative modes that solve the budget problem optimally and each solution may have a different total cost value. In this study we consider the budget problem and aim to find the minimum cost solution among the minimum project completion time solutions. We analyse the structure of the problem together with its linear programming relaxation and derive some mechanisms for reducing the problem size. We solve the reduced problem by branch and bound based optimization and heuristic algorithms. We find that our branch and bound algorithm finds optimal solutions for medium-sized problem instances in reasonable times and the heuristic algorithms produce high quality solutions very quickly.  相似文献   

13.
We describe a new exact procedure for the discrete time/cost trade-off problem in deterministic activity-on-the-arc networks of the CPM type, where the duration of each activity is a discrete, nonincreasing function of the amount of a single resource (money) committed to it. The objective is to construct the complete and efficient time/cost profile over the set of feasible project durations. The procedure uses a horizon-varying approach based on the iterative optimal solution of the problem of minimising the sum of the resource use over all activities subject to the activity precedence constraints and a project deadline. This optimal solution is derived using a branch-and-bound procedure which computes lower bounds by making convex piecewise linear underestimations of the discrete time/cost trade-off curves of the activities to be used as input for an adapted version of the Fulkerson labelling algorithm for the linear time/cost trade-off problem. Branching involves the selection of an activity in order to partition its set of execution modes into two subsets which are used to derive improved convex piecewise linear underestimations. The procedure has been programmed in Visual C ++ under Windows NT and has been validated using a factorial experiment on a large set of randomly generated problem instances.  相似文献   

14.
项目调度中的时间和费用是两个重要的指标,而在不确定环境下进度计划的鲁棒性则是保证项目平稳实施的关键。本文研究不确定环境下的多目标项目调度优化问题,以优化项目的工期、鲁棒值和成本为目标安排各活动的开始时间。基于此,作者构建多目标项目调度优化模型,将模型分解为三个子模型分析目标间的权衡关系,然后设计非劣排序遗传算法进行求解,应用精英保留策略和基于子模型权衡关系的优化策略优化算法,进行算法测试和算例参数敏感性分析。最后,应用上述方法研究一个项目实例,计算得到非劣解集,实例的敏感性分析结果进一步验证了三个目标间的权衡关系,据此提出资源的有效利用策略。本文的研究可以为多目标项目调度制定进度计划提供定量化决策支持。  相似文献   

15.
In this paper, we define a new rule for the resolution of the slack allocation problem in a PERT network. This problem exists of allocating existing extra time in some paths among the activities belonging to those paths. The allocation rule that we propose assigns extra time to the activities proportionally to their durations in such a way that no path duration exceeds the completion time of the whole project. This time allocation enables us to make a schedule for the PERT project under study. We give two characterizations of the rule and we compare it with others that have been previously defined in the literature.  相似文献   

16.
New fuzzy models for time-cost trade-off problem   总被引:1,自引:0,他引:1  
The time-cost trade-off problem is a specific type of the project scheduling problem which studies how to modify project activities so as to achieve the trade-off between the completion time and the project cost. In real projects, the trade-off between the project cost and the completion time, and the uncertainty of the environment are both considerable aspects for managers. In this paper, three new fuzzy time-cost trade-off models are proposed, in which credibility theory is applied to describe the uncertainty of activity duration times. A searching method by integrating fuzzy simulation and genetic algorithm is produced to search the quasi-optimal schedules under some decision-making criteria. The purpose of the paper is to reveal how to obtain the optimal balance of the completion time and the project cost in fuzzy environments.  相似文献   

17.
本文利用马尔可夫骨架过程理论研究PERT网络模型,其中网络各弧线的长度是相互独立的随机变量。文中构造了一个马尔可夫骨架过程,利用其向后方程求解随机网络最长路径长度的分布函数。  相似文献   

18.
A well-known problem in critical path analysis involves normal and crash durations being provided for each activity, with corresponding costs, and requires a minimum cost schedule of durations to be determined for all possible durations of the project. It has long been known that an optimal solution to the problem can be obtained iteratively by constructing a minimum cost network flow problem and adjusting the durations of activities corresponding to a minimum capacity cut-set. A recent paper described this method, but gave no indication of how the method could be derived. It is shown here that a linear programming formulation and its dual enables this to be done very simply.  相似文献   

19.
This paper proposes a novel approach for time-cost trade-off analysis of a project network in fuzzy environments. Different from the results of previous studies, in this paper the membership function of the fuzzy minimum total crash cost is constructed based on Zadeh’s extension principle and fuzzy solutions are provided. A pair of two-level mathematical programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy minimum total crash cost at α. By enumerating different values of α, the membership function of the fuzzy minimum total crash cost is constructed, and the corresponding optimal activity time for each activity is also obtained at the same time. An example of time-cost trade-off problem with several fuzzy parameters is solved successfully to demonstrate the validity of the proposed approach. Since the minimum total crash cost is expressed by a membership function rather than by a crisp value, the fuzziness of parameters is conserved completely, and more information is provided for time-cost trade-off analysis in project management. The proposed approach also can be applied to time-cost trade-off problems with other characteristics.  相似文献   

20.
Other researchers have indicated the theoretical problems of using the PERT techniques commonly described in elementary operational research and operations management texts. Monte Carlo simulation has often been suggested as an alternative means of analyzing PERT networks but simulating a network of real world proportions is often assumed to be prohibitively expensive. This paper measures the accuracy and cost of standard PERT and simulation methods for real world sized problems. In addition, several computational heuristics are described and tested that indicate that simulation is a viable alternative. The results indicate that intelligent simulation of PERT networks is considerably more accurate than standard PERT analysis and is definitely not cost prohibitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号