首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transition temperature obtained from recent Monte Carlo calculations for the Quartet Ising model on the fcc lattice deviated by 17% from the exact transition temperatureT c SD required by selfduality which we have proven afterwards. Here we use Monte Carlo results of the internal energy, which agree well with low- and high temperature series, to determine entropy and free energy and obtain aT c in excellent agreement (±0.1%) with the exact value. The Quartet model on the hcp lattice is shown to be selfdual too; the rapidly converging series for the fcc and the hcp lattice differ only in higher order.Guest stay  相似文献   

2.
As a simple approximation for the ±J spin glass we studied bond percolation on square lattices. However, two neighboring chains of ferromagnetic bonds are required for spins to be regarded as connected. We determine the percolation thresholdp c =0.8282±0.0002 and the critical exponent =0.75 –0.05 +0.02 for this specific percolation by means of Monte-Carlo simulation on square lattices (up to 150×150).  相似文献   

3.
We examined the diffusion of lattice gases, where double occupancy of sites is excluded, on three-dimensional percolation lattices at the percolation thresholdp c . The critical exponent for the root-mean-square displacement was determined to bek=0.183±0.010, which is similiar to the result of Roman for the problem of the ant in the labyrinth. Furthermore, we found a plateau value fork at intermediate times for systems with higher concentrations of lattice gas particles.  相似文献   

4.
By decomposing certain lattices into two sublattices, and examining at percolation threshold the structure of their infinite clusters, an approximate relation between p c 0 , of the original lattice and p c 1 , of the sublattice is established: p c 0 (p c 1 )1/2. It is conjectured that an inequality always holds: p c 0 (p c 1 )1/2, and heuristic arguments are given to substantiate it. By similar considerations good estimates forp c of certain correlated percolation problems are also obtained.  相似文献   

5.
A new percolation problem is posed where the sites on a lattice are randomly occupied but where only those occupied sites with at least a given numberm of occupied neighbors are included in the clusters. This problem, which has applications in magnetic and other systems, is solved exactly on a Bethe lattice. The classical percolation critical exponents=gg=1 are found. The percolation thresholds vary between the ordinary percolation thresholdp c (m=1)=l/(z – 1) andp c(m=z) =[l/(z – 1)]1/(z–1). The cluster size distribution asymptotically decays exponentially withn, for largen, p p c .Supported in part by National Science Foundation grant DMR78-10813.  相似文献   

6.
The phase transitions of nearest-neighbour interacting Ising models on self-avoiding walk (SAW) chains on square and triangular lattices have been studied using Monte Carlo technique. To estimate the transition temperature (T c) bounds, the average number of nearest-neighbours (Z eff) of spins on SAWs have been determined using the computer simulation results, and the percolation thresholds (p c) for site dilution on SAWs have been determined using Monte Carlo methods. We find, for SAWs on square and triangular lattices respectively,Z eff=2.330 and 3.005 (which compare very well with our previous theoretically estimated values) andp c=0.022±0.003 and 0.045±0.005. When put in Bethe-Peierls approximations, the above values ofZ eff givekT c/J<1.06 and 1.65 for Ising models on SAWs on square and triangular lattices respectively, while, using the semi-empirical relation connecting the Ising modelT c's andp c's for the same lattices, we findkT c/J0.57 and 0.78 for the respective models. Using the computer simulation results for the shortest connecting path lengths in SAWs on both kinds of lattices, and integrating the spin correlations on them, we find the susceptibility exponent =1.024±0.007, for the model on SAWs on two dimensional lattices.  相似文献   

7.
The Coniglio-Stanley-Klein model is a random bond percolation process between the occupied sites of a lattice gas in thermal equilibrium. Our Monte Carlo simulation for 403 and 603 simple cubic lattices determines at which bond thresholdp Bc , as a function of temperatureT and concentrationx of occupied sites, an infinite network of active bonds connects occupied sites. The curvesp Bc (x, T) depend only slightly onT whereas they cross over if plotted as a function of the field conjugate tox. Except close toT c we find 1/p Bc to be approximated well by a linear function ofx, in the whole interval between the thresholdx c (T) of interacting site percolation atp Bc =1 and the random bond percolation limitx=1 atp Bc =0.248±0.001. Thisx c (T) varied between 0.22 forT=0.96 (coexistence curve) and 0.3117±0.0003 forT= (random site percolation). At the critical point (T=T andx=1/2) we confirmed quite accurately the predictionp Bc =1-exp(–2J/k B T c ) of Coniglio and Klein. As a byproduct we found 0.89±0.01 for the critical exponent of the correlation length in random percolation.  相似文献   

8.
We introduce a new class of bootstrap percolation models where the local rules are of a geometric nature as opposed to simple counts of standard bootstrap percolation. Our geometric bootstrap percolation comes from rigidity theory and convex geometry. We outline two percolation models: a Poisson model and a lattice model. Our Poisson model describes how defects--holes is one of the possible interpretations of these defects--imposed on a tensed membrane result in a redistribution or loss of tension in this membrane; the lattice model is motivated by applications of Hooke spring networks to problems in material sciences. An analysis of the Poisson model is given by Menshikov et al. (4) In the discrete set-up we consider regular and generic triangular lattices on the plane where each bond is removed with probability 1–p. The problem of the existence of tension on such lattice is solved by reducing it to a bootstrap percolation model where the set of local rules follows from the geometry of stresses. We show that both regular and perturbed lattices cannot support tension for any p<1. Moreover, the complete relaxation of tension--as defined in Section 4--occurs in a finite time almost surely. Furthermore, we underline striking similarities in the properties of the Poisson and lattice models.  相似文献   

9.
Summary By means of a well-developed method in self-organized criticality, we can obtain the lower bound for the percolation threshold (p c) of the corresponding site percolation problem. In some special cases, we have proved that such lower bounds are indeed the percolation thresholds. We can reproduce some well-known percolation thresholds of various lattices including the Cayley trees and Kock curves in this framework.  相似文献   

10.
Exact series for lattices of dimension between 2 and 6 are used to report on the asymptotic features of the scaling function for the average number of clusters in directed percolation, close to, and away from, the most recent estimated intervals forp c . Scanning of the noncritical regions yields exponent ranges compatible with the undirected percolation equivalents. Close top c the scaling function varies fairly linearly in terms of the variablez=(p–p c )s and this result is rather stable particularly bearing in mind the modestly available precision forp c in higher dimensionalities.  相似文献   

11.
When directed percolation in a bond percolation process does not occur, any path to infinity on the open bonds will zigzag back and forth through the lattice. Backbends are the portions of the zigzags that go against the percolation direction. They are important in the physical problem of particle transport in random media in the presence of a field, as they act to limit particle flow through the medium. The critical probability for percolation along directed paths with backbends no longer than a given length n is defined as p n. We prove that (p n) is strictly decreasing and converges to the critical probability for undirected percolation p c. We also investigate some variants of the basic model, such as by replacing the standard d-dimensional cubic lattice with a (d–1)-dimensional slab or with a Bethe lattice; and we discuss the mathematical consequences of alternative ways to formalize the physical concepts of percolation and backbend.  相似文献   

12.
We simulate the bond and site percolation models on several three-dimensional lattices, including the diamond, body-centered cubic, and face-centered cubic lattices. As on the simple-cubic lattice [Phys. Rev. E, 2013, 87(5): 052107], it is observed that in comparison with dimensionless ratios based on cluster-size distribution, certain wrapping probabilities exhibit weaker finite-size corrections and are more sensitive to the deviation from percolation threshold Pc, and thus provide a powerful means for determining Pc. We analyze the numerical data of the wrapping probabilities simultaneously such that universal parameters are shared by the aforementioned models, and thus significantly improved estimates of Pc are obtained.  相似文献   

13.
The parting limit or de-alloying threshold for electrolytic dissolution of the more reactive component from a homogeneous fcc binary alloy is usually between 50 and 60 at%. The system that has been most studied, dissolution of Ag from Ag–Au, shows a parting limit close to 55 at% Ag. Here, Kinetic Monte Carlo (KMC) simulations of ‘Ag–Au’ alloys and geometric percolation modeling are used to study the relationship between this parting limit and the high-density site percolation thresholds p c(m) for an fcc lattice, subject to the rule that atoms with coordination greater than nine are prevented from dissolution. The value of p c(9) is calculated from geometric considerations to be 59.97 ± 0.03%. In comparison, using KMC simulations with no surface diffusion and no dissolution allowed for ‘Ag’ atoms with more than nine total neighbors, the parting limit is found to be slightly lower (58.4 ± 0.1%). This slight discrepancy is explained by consideration of the local atomic configurations of ‘Ag’ atoms – a few of these configurations satisfy the percolation requirement but do not sustain de-alloying, while a larger number show the converse behavior. There is still, however, an underlying relationship between the parting limit and the percolation threshold, because being at p c(9) guarantees a percolation path in which successive ‘Ag’ atoms share at least one other ‘Ag’ neighbor. With realistic kinetics of surface diffusion for ‘Au’, the parting limit drops to 54.7 ± 0.3% because a few otherwise inaccessible dissolution paths are opened up by surface diffusion of ‘Au’.  相似文献   

14.
We study the site and bond quantum percolation model on the two-dimensional square lattice using series expansion in the low concentration limit. We calculate series for the averages of , where T ij (E) is the transmission coefficient between sites i and j, for k=0, 1, , 5 and for several values of the energy E near the center of the band. In the bond case the series are of order p14 in the concentration p(some of those have been formerly available to order p10) and in the site case of order p16. The analysis, using the Dlog-Padé approximation and the techniques known as M1 and M2, shows clear evidence for a delocalization transition (from exponentially localized to extended or power-law-decaying states) at an energy-dependent threshold p q(E) in the range , confirming previous results (e.g. and for bond and site percolation) but in contrast with the Anderson model. The divergence of the series for different kis characterized by a constant gap exponent, which is identified as the localization length exponent from a general scaling assumption. We obtain estimates of . These values violate the bound of Chayes et al. Received 28 February 2000  相似文献   

15.
Structure and quantum effects of a Cl2 molecule embedded in fcc and hcp para-hydrogen (pH2) crystals are investigated in the zero-temperature limit. The interaction is modelled in terms of Cl2–pH2 and pH2–pH2 pair potentials from ab initio CCSD(T) and MP2 calculations. Translational and rotational motions of the molecules are described within three-dimensional anharmonic Einstein and Devonshire models, respectively, where the crystals are either treated as rigid or allowed to relax. The pH2 molecules, as well as the heavier Cl2 molecule, show large translational zero-point energies (ZPEs) and undergo large-amplitude translational motions. This gives rise to substantial reductions in the cohesive energies and expansions of the lattices, in agreement with experimental results for pure hydrogen crystals. The rotational dynamics of the Cl2 impurity is restricted to small-amplitude librations, again with high librational ZPEs, which are described in terms of two-dimensional non-degenerate anharmonic oscillators. The lattice relaxation causes qualitative changes of the rotational energy surfaces, which finally favour librations around the crystallographic directions pointing towards the nearest neighbours, both for fcc and hcp lattices. Implications on the reactant orientation in the experimentally observed laser-induced chemical reaction, Cl + H2 → HCl + H, are discussed.  相似文献   

16.
Transmission electron microscopy, electron diffraction, and vibrating-sample magnetometry are used to show that a metastable hcp structure can form in both nickel and Ni-Pd alloy films during alternating sputtering of the Ni and Pd components of composite targets. The hcp lattice parameters increase monotonically when the palladium content in a sputtered target increases in the range 0–75%. The ratio of the hcp lattice parameters c/a is close to the ideal ratio for the hcp lattice (1.63) within the limits of experimental error. In the as-deposited state, nickel and Ni-Pd alloy films with an hcp structure have no magnetic moment. Upon annealing, the films transform into a ferromagnetic state with an fcc structure. The concentration dependence of the lattice parameter of the fcc solid solution a 0 is found to exhibit a positive deviation from Vegard’s law, which is characteristic of alloys with a concave liquidus line.  相似文献   

17.
Monte Carlo studies of the cluster size distribution for the site percolation problem on the triangular lattice are extended to lattices with up to 4 × 1011 sites. Agreement with the predictions of scaling theory at pc is excellent over a range of cluster sizes spanning five orders of magnitude.  相似文献   

18.
The stiffness exponents in the glass phase for lattice spin glasses in dimensions are determined. To this end, we consider bond-diluted lattices near the T = 0 glass transition point p*. This transition for discrete bond distributions occurs just above the bond percolation point pc in each dimension. Numerics suggests that both points, pc and p*, seem to share the same 1/d-expansion, at least for several leading orders, each starting with 1/(2d). Hence, these lattice graphs have average connectivities of near p* and exact graph-reduction methods become very effective in eliminating recursively all spins of connectivity , allowing the treatment of lattices of lengths up to L = 30 and with up to 105-106 spins. Using finite-size scaling, data for the defect energy width over a range of p > p* in each dimension can be combined to reach scaling regimes of about one decade in the scaling variable . Accordingly, unprecedented accuracy is obtained for the stiffness exponents compared to undiluted lattices (p = 1), where scaling is far more limited. Surprisingly, scaling corrections typically are more benign for diluted lattices. We find in for the stiffness exponents y3 = 0.24(1), y4 = 0.61(2), y5 = 0.88(5), and y6 = 1.1(1).Received: 29 October 2003, Published online: 20 April 2004PACS: 05.50. + q Lattice theory and statistics (Ising, Potts, etc.) - 64.60.Cn Order-disorder transformations; statistical mechanics of model systems - 75.10.Nr Spin-glass and other random models - 02.60.Pn Numerical optimization  相似文献   

19.
A new site percolation model, directed spiral percolation (DSP), under both directional and rotational (spiral) constraints is studied numerically on the square lattice. The critical percolation threshold p c ≈ 0.655 is found between the directed and spiral percolation thresholds. Infinite percolation clusters are fractals of dimension d f ≈ 1.733. The clusters generated are anisotropic. Due to the rotational constraint, the cluster growth is deviated from that expected due to the directional constraint. Connectivity lengths, one along the elongation of the cluster and the other perpendicular to it, diverge as pp c with different critical exponents. The clusters are less anisotropic than the directed percolation clusters. Different moments of the cluster size distribution P s(p) show power law behaviour with | p - p c| in the critical regime with appropriate critical exponents. The values of the critical exponents are estimated and found to be very different from those obtained in other percolation models. The proposed DSP model thus belongs to a new universality class. A scaling theory has been developed for the cluster related quantities. The critical exponents satisfy the scaling relations including the hyperscaling which is violated in directed percolation. A reasonable data collapse is observed in favour of the assumed scaling function form of P s(p). The results obtained are in good agreement with other model calculations. Received 10 November 2002 / Received in final form 20 February 2003 Published online 23 May 2003 RID="a" ID="a"e-mail: santra@iitg.ernet.in  相似文献   

20.
Appearance potential spectra have been measured for (low-temperature) hcp and (high-temperature) fcc cobalt. The measurements allowed a determination of the transition temperatures of (690±6) K for the hcp fcc transition and (653±12) K for the fcc hcp transition in good agreement with earlier findings. Critical-point energies are (6.7±0.3) eV for the M point in hcp cobalt and (5.6±0.3) eV for the L7 and (8.9±0.3) eV for the X7, K8 critical points in fcc cobalt, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号