首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
直接甲醇燃料电池阴极电催化剂的研究进展   总被引:8,自引:0,他引:8  
直接甲醇燃料电池(DMFC)功率密度高,燃料甲醇价格低廉、储存和携带方便,特别适合作为电动车和小型电子设备的电源,是目前燃料电池研究领域的一个热点。本文介绍了40年来DMFC阴极电催化剂的发展历史及现状,并针对目前严重影响DMFC性能的“甲醇透过”问题,阐述了研制耐甲醇阴极电催化剂的重要性,讨论了今后DMFC阴极电催化剂的发展趋势。  相似文献   

2.
直接甲醇燃料电池(DMFC)通常采用空气中氧气作为氧化剂,但空气中硫化物、氮化物等污染物会对电池性能造成影响. 本文采用恒流放电曲线、极化曲线、循环伏安扫描(CV)和电化学阻抗谱(EIS)等方法,研究SO2对DMFC电池性能影响,分析其毒化作用机制. 研究表明,SO2毒化导致催化剂电化学活性面积(ECSA)减小,氧还原反应(ORR)电荷转移电阻增大,从而造成DMFC电池开路电压和工作电压加速衰减,峰值功率密度减小. 进一步探究了三种恢复策略,空气吹扫与I-V变载操作都只能实现电池性能的部分恢复,CV扫描可完全恢复电池性能.  相似文献   

3.
直接甲醇燃料电池(DMFC)具有能量密度高、无需充电、液体燃料添加便捷及环境友好等优点,是新一代便携式移动电源研究热点. DMFC规模应用的主要技术挑战是如何进一步提高电池性能、显著降低成本和可靠延长寿命.催化电极作为 DMFC发电核心和成本的集中体现,其电催化活性和贵金属用量直接影响 DMFC的性能和成本,开发高性能、低成本的催化电极对推进 DMFC实用化进程具有重要意义.特别是在被动式 DMFC中,阴极催化电极不仅需要提高电催化活性和大幅降低贵金属用量,而且还面临内部严重的“水淹”和氧传质受限等问题.近年来,随着纳米技术发展,有序纳米结构已逐渐应用于 DMFC催化电极的构筑中,电池性能得到显著提高.然而,目前的研究主要集中在膜电极纳米有序微孔层、纳米有序改性膜和纳米有序阳极催化电极及其阳极贵金属载量降低等方面,关于阴极催化电极在有序纳米结构以及载量降低等方面的研究相对较少.
  本文采用模板法直接在微孔层上电沉积定向生长排列有序、直径可控的铂纳米棒阵列,并作为阴极催化电极应用于被动式 DMFC. X射线衍射和透射电镜结果表明,该铂纳米棒结构稳定,表面含有丰富的纳米晶须结构,有利于催化电极比表面积增加和电催化活性提高.不同催化电极上氧还原的极化曲线表明电极性能依下列次序变化:直径为200 nm铂纳米棒阵列电极>100 nm铂纳米棒阵列电极>商业化铂黑催化电极.电池性能表征表明,长度为1–3μm、直径分别为200和100 nm、载量为1.0 mg/cm2的铂纳米棒阵列作为阴极催化电极的 DMFC最大功率密度分别为17.3和12.0 mW/cm2.通过催化电极电化学活性面积和阻抗测试,分析其性能提高的原因可归结于有序排列的铂纳米棒阵列结构提高了电化学活性面积、增强了氧还原电催化活性并促进了阴极氧的传质.  相似文献   

4.
直接甲醇燃料电池(DMFC)具有能量密度高、无需充电、液体燃料添加便捷及环境友好等优点,是新一代便携式移动电源研究热点.DMFC规模应用的主要技术挑战是如何进一步提高电池性能、显著降低成本和可靠延长寿命.催化电极作为DMFC发电核心和成本的集中体现,其电催化活性和贵金属用量直接影响DMFC的性能和成本,开发高性能、低成本的催化电极对推进DMFC实用化进程具有重要意义.特别是在被动式DMFC中,阴极催化电极不仅需要提高电催化活性和大幅降低贵金属用量,而且还面临内部严重的"水淹"和氧传质受限等问题.近年来,随着纳米技术发展,有序纳米结构已逐渐应用于DMFC催化电极的构筑中,电池性能得到显著提高.然而,目前的研究主要集中在膜电极纳米有序微孔层、纳米有序改性膜和纳米有序阳极催化电极及其阳极贵金属载量降低等方面,关于阴极催化电极在有序纳米结构以及载量降低等方面的研究相对较少.本文采用模板法直接在微孔层上电沉积定向生长排列有序、直径可控的铂纳米棒阵列,并作为阴极催化电极应用于被动式DMFC.X射线衍射和透射电镜结果表明,该铂纳米棒结构稳定,表面含有丰富的纳米晶须结构,有利于催化电极比表面积增加和电催化活性提高.不同催化电极上氧还原的极化曲线表明电极性能依下列次序变化:直径为200 nm铂纳米棒阵列电极100 nm铂纳米棒阵列电极商业化铂黑催化电极.电池性能表征表明,长度为1–3μm、直径分别为200和100nm、载量为1.0 mg/cm2的铂纳米棒阵列作为阴极催化电极的DMFC最大功率密度分别为17.3和12.0 m W/cm~2.通过催化电极电化学活性面积和阻抗测试,分析其性能提高的原因可归结于有序排列的铂纳米棒阵列结构提高了电化学活性面积、增强了氧还原电催化活性并促进了阴极氧的传质.  相似文献   

5.
直接甲醇燃料电池催化活性层的优化   总被引:1,自引:0,他引:1  
张军  李磊  许莉  王宇新 《电化学》2002,8(3):315-320
本文考察了直接甲醇燃料电池 (DMFC)不同催化剂载量的膜电极性能 .对催化剂层中Nafion含量进行优化 ,研究了Nafion含量对电池的阻抗的影响 .实验发现 :DMFC适宜的阳极Pt_Ru/C载量为Pt 4mg/cm2 、Nafion质量百分含量为 2 1.4 % ;高电流密度下 ,阴极Pt/C载量为Pt4mg/cm2 、Nafion质量百分含量为 2 1.4 %时 ,有较好的放电性能 ,继续增加Nafion含量 ,阴极的欧姆极化和浓差极化增大 ,电池性能下降  相似文献   

6.
磷钼酸对直接甲醇燃料电池阴极氧还原的促进作用   总被引:3,自引:0,他引:3  
以磷钼酸(H4PMo12O40·xH2O,PMo12)为直接甲醇燃料电池(DMFC)阴极添加剂,制备了Pt-PMo12/C复合催化剂.电化学测试表明,该添加剂对于DMFC阴极氧还原具有明显的促进作用,与常规的Pt/C催化剂相比,相同载量下极限扩散电流提高了56.3%.在单电池性能测试中,这种促进作用使电池的最大输出功率提高了28%.  相似文献   

7.
采用流延法制备了阳极支撑的固体氧化物燃料电池(SOFC),电解质材料为钇稳定化氧化锆(YSZ),阳极为镍和YSZ构成的金属陶瓷(Ni-YSZ),阴极为LSCF-GDC/LSCF复合材料,同时在阴极与电解质之间制备了YSZ-GDC/GDC双过渡层。分别采用含3%的加湿H_2和活性炭为燃料,对此电池的输出性能及阻抗谱进行测试。采用加湿H_2测试的结果表明:在800℃下,采用双过渡层电池的开路电压达到1 V,最大功率密度为680 mW·cm~(-2),比未改良电池的最大功率密度(372 mW·cm~(-2))提高了83%。直接采用固体碳为燃料时,具有双过渡层阴极的电池在850℃时的开路电压达到0.95 V,最大输出功率密度达429 mW·cm~(-2),几乎比无过渡层阴极的电池(225 mW·cm~(-2))高出1倍,特别是双过渡层阴极还使直接使用碳燃料的SOFC(DC-SOFC)的燃料利用率提高了33%。  相似文献   

8.
采用共压直接成型法制备单腔体固体氧化物燃料电池(SC-SOFC),单电池结构为Ni-YSZ/YSZ/LSM,YSZ为8%(x)Y2O3稳定的ZrO2,LSM为锰酸镧锶(La0.7Sr0.3MnO3).应用扫描电子显微镜(SEM)研究了电池微观结构,结果表明:阴极和电解质之间结合紧密,LSM在阴极YSZ三维骨架上负载性能良好;YSZ电解质薄膜厚约50μm,阳极厚约600μm,阴极层厚约100μm.研究了单电池反应温度T,阴极催化剂负载层数n,甲烷和氧气混合体积比Rmix对电池输出性能的影响规律.在T=800℃、n=2、Rmix=2时,电池性能达到最佳,开路电压为0.95V,最大电流密度为130mA·cm-2,最大功率密度为30mW·cm-2.  相似文献   

9.
通过采用线性电势扫描(LSV)和恒电流计时电势扫描方法对氧化镧作为直接硼氢化物燃料电池阴极催化剂的电化学性能进行了研究.实验结果表明:在单室燃料电池体系中,氧化镧对氧还原具有良好的活性,同时在强碱溶液中对硼氢根离子具有很强的稳定性且对硼氢根的水解没有任何促进作用.以镍基储氢合金作为电池的阳极催化剂组装成简单的单室燃料电池,电池的开路电压达到1.052 V,在常温下(21℃),电池于0.491 V获得最高功率密度65.25 mW·cm-2,电池运行稳定.  相似文献   

10.
采用硝酸盐-甘氨酸溶液燃烧法合成了La0.6Sr0.4Co0.2Fe0.8O3-?啄(LSCF)前驱粉体, 通过XRD、BET、FESEM及激光粒度仪等手段对粉体进行表征. 结果表明, 所合成的LSCF粉体为纯钙钛矿结构, 具有高达22.9 m2·g-1的比表面积, 粒度均匀, 平均颗粒尺寸为175 nm. 非等温烧结实验表明该粉体具有良好的低温烧结活性. 在阳极NiO-YSZ(氧化钇稳定氧化锆)负载的电解质YSZ上, 于800 ℃烧结制备LSCF阴极组成的单元电池Ni-YSZ/YSZ/LSCF, 在700 ℃下以H2作燃料时具有良好的电池性能, 最大功率密度为0.97 W·cm-2, 在0.7 V时的功率密度约达到0.83 W·cm-2. 这种无中间缓冲层的低温制备LSCF阴极方法, 简化了电池结构及其制备过程, 同时提高了电池的性能.  相似文献   

11.
The supply of cathode reactants in a passive direct methanol fuel cell (DMFC) relies on naturally breathing oxygen from ambient air. The successful operation of this type of passive fuel cell requires the overall mass transfer resistance of oxygen through the layered fuel cell structure to be minimized such that the voltage loss due to the oxygen concentration polarization can be reduced. In this work, we propose a new membrane electrode assembly (MEA), in which the conventional cathode gas diffusion layer (GDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. The measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded better and much more stable performance than did the cell having the conventional MEA. The EIS spectrum analysis further demonstrated that the improved performance with the new MEA was attributed to the enhanced transport of oxygen as a result of the reduced mass transfer resistance in the fuel cell system.  相似文献   

12.
In this paper a single electrode supported direct methanol fuel cell (DMFC) is fabricated and tested. The novel architecture combines the elimination of the polymer electrolyte membrane (PEM) and the integration of the anode and cathode into one component. The thin film fabrication involves a sequential deposition of an anode catalyst layer, a cellulose acetate electronic insulating layer and a cathode catalyst layer onto a single carbon fibre paper substrate. The single electrode supported DMFC has a total thickness of 3.88 × 10?2 cm and showed a 104% improvement in volumetric specific power density over a two electrode DMFC configuration under passive conditions at ambient temperature and pressure (1 atm, 25 °C).  相似文献   

13.
Single-wall and multiwall carbon nanotubes are employed as carbon supports in direct methanol fuel cells (DMFC). The morphology and electrochemical activity of single-wall and multiwall carbon nanotubes obtained from different sources have been examined to probe the influence of carbon support on the overall performance of DMFC. The improved activity of the Pt-Ru catalyst dispersed on carbon nanotubes toward methanol oxidation is reflected as a shift in the onset potential and a lower charge transfer resistance at the electrode/electrolyte interface. The evaluation of carbon supports in a passive air breathing DMFC indicates that the observed power density depends on the nature and source of carbon nanostructures. The intrinsic property of the nanotubes, dispersion of the electrocatalyst and the electrochemically active surface area collectively influence the performance of the membrane electrode assembly (MEA). As compared to the commercial carbon black support, single wall carbon nanotubes when employed as the support for anchoring the electrocatalyst particles in the anode and cathode sides of MEA exhibited a approximately 30% enhancement in the power density of a single stack DMFC operating at 70 degrees C.  相似文献   

14.
通过测定甲醇渗透率,详细研究了阳极支撑层的聚四氟乙烯(PTFE)含量对全被动式直接甲醇燃料电池(DMFC)甲醇传质和电池性能的影响。 膜电极集合体均使用相同的阳极催化层,膜和阴极。 实验结果表明,随着阳极支撑层PTFE含量的提高,甲醇渗透速率明显减小。 其含量较高时,甲醇传质阻力较大,会导致电池在很低的电流密度下就出现传质控制区。 采用PTFE质量分数为40%的支撑层时,DMFC以9 mol/L甲醇为燃料最大功率密度可达32×10-3 W/cm2,也进一步证明了适当提高阳极支撑层的憎水性,既有助于减少甲醇的渗透,又缓解了阴极的“水淹”问题。  相似文献   

15.
The efficiency of a single direct methanol fuel cell (DMFC) with Pt–Ru decorated carbon nanotubes directly grown on carbon cloth (Pt–Ru/CNTs/CC) as a catalytic gas diffusion layer (GDL) at the anode was evaluated by polarization analysis. Pt–Ru nanoparticles were electrodeposited on dense carbon nanotubes directly grown on carbon cloth in ethylene glycol containing sulfuric acid solutions. The presence of relatively well dispersed Pt–Ru nanoparticles (4–6 nm) on the surfaces of CNTs was confirmed by transmission electron microscopy. Two more GDLs, one with dense CNTs but without the presence of Pt–Ru nanoparticles and the other with neither CNTs nor catalysts, were also prepared for comparison purpose. For quantitatively evaluating the performance of the catalytic GDL, three identical membrane–electrode-assemblies were prepared and laminated with different GDLs before they were used to construct DMFCs for performance test. It was found via polarization analyses the catalytic GDL was able to promote the peak specific power density of the DMFC by 27% at ambient temperature.  相似文献   

16.
游梦迪  程璇  刘连  张璐 《电化学》2006,12(2):148-153
设计并建立甲醇渗透测试体系和模拟直接甲醇燃料电池(DMFC)运行体系,分别考察静态条件下H-cell中甲醇的渗透和运行条件下甲醇渗透对OCV的影响.循环伏安和计时电流法测试表明:随着渗透时间的延长,阴极侧的甲醇浓度增加;甲醇浓度增加,氧化峰电流增大,峰电位正移,氢在电极表面的吸脱附受到抑制,同时甲醇的正向氧化电流曲线出现肩峰.模拟DMFC实验测试结果表明:OCV先逐渐上升,接着发生突降,大约1.5 h后趋于稳定.  相似文献   

17.
邓光荣  梁亮  李晨阳  刘长鹏  葛君杰  邢巍 《应用化学》2019,36(10):1211-1220
甲醇溶液浓度对于直接甲醇燃料电池(DMFC)的性能具有重要影响。 本文旨在建立一种能在电源系统中有效控制甲醇浓度的策略。 通过构建电池内甲醇物料守恒和热守恒方程,确定了基于电量和温度这两个参数的甲醇浓度控制策略。 通过测试温度-浓度关系验证了控制策略的可行性。 结果表明,采用该策略,DMFC电源系统稳定运行超过420 min;合适的甲醇浓度范围为0.70~0.87 mol/L。 该策略完成了甲醇浓度控制的目标,并将在电源系统中发挥重要作用。  相似文献   

18.
常压两步法催化丙三醇脱水-加氢制备 1,2-丙二醇   总被引:2,自引:0,他引:2  
赵静  于维强  李德财  马红  高进  徐杰 《催化学报》2010,31(2):200-204
 在常压 H2 气氛下催化丙三醇脱水-加氢制备了 1,2-丙二醇. 首先在 220 oC 和常压 H2 条件下, 以 Cu/Al2O3 为催化剂催化丙三醇脱水生成中间体丙酮醇, 其选择性高达 86%. 考察了 Cu 负载量、反应温度和反应气氛对催化剂性能的影响. 在随后的丙酮醇加氢反应中, Raney Ni 催化剂显示出优异的催化性能, 在 120 oC 和常压 H2 条件下, 1,2-丙二醇选择性可达 99% 以上, 催化剂连续使用 5 h 未出现失活现象. 考察了反应温度、空速及反应时间对催化剂性能的影响.  相似文献   

19.
用浸渍法分别得到含5%Na2CO3、5%NaHCO3、5%NaOH(质量比)的改性活性炭。研究了改性活性炭在含CO2原料气中的脱硫性能。在固定床反应器上考察了有氧条件下浸渍剂、反应温度和原料气湿度对SO2的脱除影响。分别在常温(25℃)和高温(350℃)下详细考察了原料气中的CO2含量对活性炭脱硫性能的影响。实验表明,常温(25℃)下,CO2的存在对活性炭脱硫有不利的影响;高温(350℃)下,CO2的存在对活性炭脱硫有促进作用。  相似文献   

20.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号