首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Double perovskite, (Sr1−xNdx)2FeMoO6, was doped with electrons through partial substitution of divalent Sr by trivalent Nd (0≤x≤0.2). The Fe valence and the degree of B-site order were probed by 57Fe Mössbauer spectroscopy. Replacing Sr by Nd increased the fraction of Fe and Mo atoms occupying wrong sites, i.e. antisite disorder. It had very little effect on the Fe valence: a small but visible increase in the isomer shift was seen for the mixed-valent FeII/III atoms occupying the right site indicating a slight movement towards divalency of these atoms, which was more than counterbalanced by the increase in the fraction of antisite Fe atoms with III valence state. It is therefore argued that the bulk of the electron doping is received by antisite Mo atoms, which - being surrounded by six MoV/VI atoms-prefer the lower IV/V valence state. Thus under Nd substitution, the charge-neutrality requirement inflicts a lattice disorder such that low - valent MoIV/V can exist.  相似文献   

2.
The ferromagnetic-to-antiferromagnetic transition in the hexagonal (Hf1−xTix)Fe2 (0?x?1) intermetallic compounds has been investigated by 57Fe Mössbauer spectroscopy. At 10 K, the transition occurs within rather narrow concentration limits, around x=0.55–0.65. We found that the key factor governing the unexpected quick change of the magnetic structure is the magnetic frustration of the Fe(2a) sites. The magnetic frustration is caused by the noncollinearity of the Fe(6h) magnetic sublattice. The noncollinearity arises from the rotation of the magnetic moments due to the competition between the ferromagnetic exchange interactions and the antiferromagnetic Fe(6h)–Ti–Fe(6h) interaction. In the compounds with x=0.4–0.6, the temperature transitions to the antiferromagnetic state are observed. As an example, the Hf0.4Ti0.6Fe2 compound is completely antiferromagnetic above 200 K.  相似文献   

3.
The magnetic hyperfine fields for 119Sn impurity atoms, localized in Ga sites of ferromagnetic intermetallic compounds RGa (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm), were measured by the Mössbauer spectroscopy technique. At T=5 K, the hyperfine field value (Bhf) varies from 3.3 T in TmGa to 28.0 T in GdGa. Huge deviation from the proportionality between Bhf and the projection of the R3+ ion spin (Sz=(g−1)J) was found. As the atomic number of the R element increases, the Bhf/Sz ratio drastically decreases from 12.6 T for PrGa to 3.3 T for TmGa. This unexpected result can be explained by the strong dependency of Bhf value on the relationship between the Sn-R atomic separation (Rnn) and the radius of the magnetic 4f shell (R4f). In the framework of this concept, the available experimental data for Sn atom in the rare-earth compounds with non-magnetic sp elements were considered. The data may be described by the universal dependency on the single parameter, λ=Rnn/R4f.  相似文献   

4.
We have studied the magnetic excitation spectrum of CeNiSn at low energies both on a polycrystalline sample using time-of-flight technique and on a single crystal with a triple axis spectrometer. The energy gap in the excitation spectrum is clearly observed in the polycrystalline sample reconciling the earlier discrepancies between the two kinds of measurements. The experimental results are consistent with the occurrence of a quasielastic signal within the gap without any significant wave vector dependence and characterized by an energy scale Γ≈0.2 meV.  相似文献   

5.
New high-pressure devices based on the use of sapphire anvils now allow single-crystal neutron diffraction experiments to be performed up to P=8–10 GPa. After giving a brief overview of the technique, we present its application to the study of pressure-induced valence instabilities in Tm monochalcogenides (TmX, X: S, Se, Te). A variety of new magnetic phases have been characterized, yielding a consistent picture of the evolution of magnetism through the series. The results indicate a striking interplay between magnetic order taking place at low temperature and different types of electronic ground states (classical semiconductor, narrow-gap Kondo insulator, metallic Kondo lattice, etc.) inferred from the transport properties. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Orthorhombic EuPdSb is known to undergo two magnetic transitions, at 12 K and at T N≃ 18 K, and in phase III (T < 12 K), single crystal magnetisation data have shown that the spin structure is collinear antiferromagnetic, with magnetic moments along the crystal a axis. From a 151Eu M?ssbauer absorption study, we show that, at any temperature within phase III, all the moments have equal sizes, and that in phase II (12 K< T <18 K) the magnetic structure is modulated and incommensurate with the lattice spacings. The modulation is close to a pure sine-wave just below T N = 18 K, and it squares up as temperature is lowered. We measured the thermal variations of the first and third harmonics of the moment modulation, and we could determine the first and third harmonics of the exchange coupling. We furthermore show that the antiferromagnetic-incommensurate transition at 12 K is strongly first order, with a hysteresis of 0.05 K, and that the incommensurate-paramagnetic transition at 18 K is weakly first order. Finally, we present an explanation of the spin-flop transition observed in the single crystal magnetisation data in phase III when || in terms of an anisotropic molecular field tensor. Received 17 January 2001 and Received in final form 20 March 2001  相似文献   

7.
The microwave induced magnetoresistance in a GaAs/AlGaAs heterostructure was studied at temperatures below 1 K and frequencies in the range of 150-400 GHz. A distinct node in the Shubnikov-de Haas oscillations, induced by the microwave radiation, is clearly observed. The node position coincides with the position of the cyclotron resonance on the carriers with effective mass (0.068±0.005)m0.  相似文献   

8.
Zero-field aggregation of magnetic nanoparticles in a ferrofluid can either be irreversible or result from a dynamic equilibrium; the two cases can be distinguished by measurements of the complex magnetic susceptibility and by cryogenic transmission electron microscopy (cryo-TEM). We demonstrate this by comparing two colloidal systems that show dipolar structure formation in zero field. A dispersion of magnetic iron nanoparticles is gradually oxidized to decrease the magnetic moments, and despite the vanishing dipolar attractions, thermal motion does not break up the dipolar structures into single particles. Instead, the dipolar structures become chemically fixed during the oxidation process, an example of irreversible aggregation. In contrast, the zero-field dipolar structures in a chemically stable magnetite dispersion are found to disintegrate upon dilution, indicating that the structures are reversible and result from a dynamic equilibrium.  相似文献   

9.
Two-Dimensional Angular Correlation of positron Annihilation Radiation (2D-ACAR) experiments have been performed on n-type GaAs. By combining these results with those from positron lifetime experiments, the momentum distribution of the arsenic vacancy in its neutral (V aAs 0 ) and negative (V As ) charge states have been extracted. These distributions were all normalized to the respective positron lifetime that characterizes them. The first thing to be noticed is that the momentum distributions of the vacancies, as seen by the positron, are fairly isotropic and structureless. The distribution forV As 0 is more peaked than that ofV As while the latter is more intense in the large momentum regions of the spectra. From this, it can be inferred that VA. has a smaller open volume thanV As 0 A closer look at the momentum distribution of the vacancies reveals that they are not entirely isotropic, but, in fact, have a bulk-like component. Finally, the experimental results for bulk GaAs andV As compare well in a qualitative manner with the momentum distributions that result from an ab-initio molecular dynamics calculation.  相似文献   

10.
11.
S.G. Magalhães  C.V. Morais 《Physica A》2009,388(11):2140-2148
The stability of a spin-glass (SG) phase is analyzed in detail for a fermionic Ising SG (FISG) model in the presence of a magnetic transverse field Γ. The fermionic path integral formalism, replica method and static approach have been used to obtain the thermodynamic potential within one step replica symmetry breaking ansatz. The replica symmetry (RS) results show that the SG phase is always unstable against the replicon. Moreover, the two other eigenvalues λ± of the Hessian matrix (related to the diagonal elements of the replica matrix) can indicate an additional instability to the SG phase, which enhances when Γ is increased. Therefore, this result suggests that the study of the replicon cannot be enough to guarantee the RS stability in the present quantum FISG model, especially near the quantum critical point. In particular, the FISG model allows changing the occupation number of sites, so one can get a first order transition when the chemical potential exceeds a certain value. In this region, the replicon and the λ± indicate instability problems for the SG solution close to all ranges of a first order boundary.  相似文献   

12.
By using oil in water micelles, cobalt ferrite particles having an average diameter around 3 nm were synthetised. These nanoparticles are characterized by the presence of cation vacancies and no Fe(II) is observed, as it has been described in literature previously. Chemical interfacial treatment allows to coat the particles with citrate derivatives. The magnetic properties of uncoated and coated particles strongly diluted in a polymer substrate are compared by magnetization measurements and 57Fe M?ssbauer spectroscopy. The anisotropy constant is shown to be independent of coating, whereas the magnetization is found to be larger in the uncoated particles. Received 3 February 1998  相似文献   

13.
Using the numerical renormalization group method, the dependences on temperature of the magnetic susceptibility χ(T) and specific heat C(T) are obtained for the single-impurity Anderson model with inclusion of d-f the Coulomb interaction. It is shown that the exciton effects caused by this effect (charge fluctuations) can significantly change the behaviour of C(T) in comparison with the standard Anderson model at moderately low temperatures, whereas the behaviour of χ(T) remains nearly universal. The ground-state and temperature-dependent renormalizations of the effective hybridization parameter and f-level position caused by the d-f interaction are calculated, and satisfactory agreement with the Hartree-Fock approximation is derived.  相似文献   

14.
Linear stability analysis of capillary instabilities in a thin nematic liquid crystalline cylindrical fiber embedded in an immiscible viscous matrix is performed by formulating and solving the governing nemato-capillary equations, that include the effect of temperature on the nematic ordering as well as the effect of the nematic orientation. A representative axial nematic orientation texture with the planar easy axis at the fiber surface is studied. The surface disturbance is expressed in normal modes, which include the azimuthal wave number m to take into account non-axisymmetric modes. Capillary instabilities in nematic fibers reflect the anisotropic nature of liquid crystals, such as the ordering and orientation contributions to the surface elasticity and surface normal and bending stresses. Surface gradients of normal and bending stresses provide additional anisotropic contributions to the capillary pressure that may renormalize the classical displacement and curvature forces that exist in any fluid fiber. The exact nature (stabilizing and destabilizing) and magnitude of the renormalization of the displacement and curvature forces depend on the nematic ordering and orientation, i.e. the anisotropic contribution to the surface energy, and accordingly capillary instabilities may be axisymmetric or non-axisymmetric. In addition, when the interface curvature effects are accounted for as contributions of the work of interfacial bending and torsion to the total energy of the system, the higher-order bending moment contribution to the surface stress tensor is critical in stabilizing the fiber instabilities. For the planar easy axis, the nematic ordering contribution to the surface energy, which renormalizes the effect of the fiber shape, plays a crucial role to determine the instability mechanisms. Moreover, the unstable modes, which are most likely observed, can be driven by the dependence of surface energy on the surface area. Low-ordering fibers display the classical axisymmetric mode, since the surface energy decreases by decreasing the surface area. Decreasing temperature gives rise to the encounter with a local maximum or to monotonic increase of the characteristic length of the axisymmetric mode. Meanwhile, in the presence of high surface ordering, non-axisymmetric finite wavelength instabilities emerge, with higher modes growing faster since the surface energy decreases by increasing the surface area. As temperature decreases, the pitches of the chiral microstructures become smaller. However, this non-axisymmetric instability mechanism can be regulated by taking account of the surface bending moment, which contains higher order variations in the interface curvatures. More and more non-axisymmetric modes emerge as temperature decreases, but, at constant temperature, only a finite number of non-axisymmetric modes are unstable and a single fastest growing mode emerges with lower and higher unstable modes growing slower. For nematic fibers, the classical fiber-to-droplet transformation is one of several possible instability pathways, while others include chiral microstructures. The capillary instabilities' growth rate of a thin nematic fiber in a viscous matrix is suppressed by increasing either the fiber or matrix viscosity, but the estimated droplet sizes after fiber breakup in axisymmetric instabilities decrease with increasing the matrix viscosity. Received 15 April 2002 and Received in final form 3 October 2002 RID="a" ID="a"e-mail: alejandro.rey@mcgill.ca  相似文献   

15.
We take a critical view at the basic definition of extended single particle states in a non-translationally invariant system. For this, we present the case of a hierarchical lattice and incorporate long range interactions that are also distributed in a hierarchical fashion. We show that it is possible to explicitly construct eigenstates with constant amplitudes (normalized to unity) at every lattice point for special values of the electron-energy. However, the end-to-end transmission, corresponding to the above energy of the electron in such a hierarchical system depends strongly on a special correlation between the numerical values of the parameters of the Hamiltonian. Keeping the energy and the distribution of the amplitudes invariant, one can transform the lattice from conducting to insulating simply by tuning the numerical values of the long range interaction. The values of these interactions themselves display a fractal character.  相似文献   

16.
We present measurements in the YbCu5-xAlx series, down to the 50 mK range, using 170Yb M?ssbauer absorption spectroscopy and magnetisation measurements. In this series, the hybridisation between the Yb 4 f electrons and the conduction electrons is known to decrease as the Al content x increases. We apply the variational solution of the impurity Kondo problem to the interpretation of our data. We show that the Kondo temperature can be derived from the measured 4 f quadrupole moment and, for the magnetically ordered compounds (), we obtain the exchange energy as a function of the Al content. Our findings are in general agreement with Doniach's model describing the onset of magnetic ordering according to the relative values of the Kondo and exchange energy scales. Received 16 April 1998  相似文献   

17.
We consider theoretically valence transformations of doping metal ions in oxide crystals induced by oxidation and reduction obtained by changes in the ambient oxygen partial pressure. Three types of oxygen vacancies are assumed to mediate transformations: neutral, singly ionized, and doubly ionized. We provide thermodynamic equilibrium analyses, yielding concentration relations among the oxygen vacancy, metal ions, holes and electrons as functions of the ambient oxygen pressure. The results suggest that experimental study of different species concentrations at thermodynamic equilibrium as functions of pressure and temperature should allow assessment of various reversible reaction constants controlling the process. In the Part II companion paper, the kinetic (diffusion) characteristics are considered in detail.  相似文献   

18.
We consider theoretically valence transformations of doping metal ions in oxide crystals induced by oxidation and reduction obtained by changes in the ambient oxygen partial pressure. Three types of oxygen vacancies are assumed to mediate transformations: neutral, singly ionized, and doubly ionized. In the companion part I paper we provide thermodynamic analyses yielding concentration relations among the oxygen vacancy, metal ions, holes and electrons, as functions of the ambient oxygen pressure. In the present companion part II paper we provide time dependent concentration profiles of the various species and reaction rate profiles. The diffusion exhibits a complex behavior; under some conditions, it may be described by a constant diffusivity, and is symmetric with respect to oxidation and reduction. However, under a wide range of conditions, the ionic state changes are highly asymmetric with respect to oxidation and reduction. For example, in the case of a neutral vacancy, a very narrow reaction front may establish during reduction. In the inverse (oxidation) process, however, the different species' profiles are quite smooth.  相似文献   

19.
无碰撞电流片低频电磁模不稳定性:MHD模型   总被引:5,自引:0,他引:5       下载免费PDF全文
利用含无电阻广义Ohm定律的可压缩磁流体力学(MHD)理论,研究了在具有剪切磁场的无碰撞电流片中低频电磁模不稳定性,假定等离子体压力各向同性,推导出了三维扰动传播波模的色散关系.色散关系的数值求解集中在电流片中间平面(z=0)和半厚度边缘(z=1)上,并分别考虑了二维传播和三维传播,以及不同的离子惯性长度情况.主要结果如下:1)对 于二维扰动传播(kz=0)的波,在z=0平面上,Alfven波增长率最大,不稳定的波 频率 和波数范围也更宽.离中间平面越远,增长率越小,波数区域越小.同时,随着离子惯性长度 的增大,Alfven波不稳定性的增长率变大.2)对于三维扰动传播(kz≠0)的波, 哨声是 不稳定的.在电流片中间平面上,哨声有明显的增长率;而在离子惯性区外边,哨声的增长 率还变大.3)在电流片中间(z=0)平面上,低频波主要是电流不稳定性激发的.在离中间 平面较远处,电流、密度和压力的梯度不稳定性变得更重要. 关键词: 无碰撞电流片 磁流体力学 色散关系 不稳定性  相似文献   

20.
The system Cu2FeO2BO3 is an oxyborate belonging to the family of the ludwigites. In this paper we present AC susceptibility, magnetization measurements and M?ssbauer spectroscopy on this material which allows for a complete characterization of its complex magnetic behavior. We find an hierarchy of interactions which clearly defines three regimes with decreasing temperature. These are associated with, the freezing of the Fe moments, the antiferromagnetic ordering of the Cu sub-lattice and finally the coupling between both systems. Received 25 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号