首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

2.
Summary: Procedures are developed to estimate kinetic rate coefficients from available rate data for the free radical solution polymerization of butyl acrylate at 50 °C. The analysis is based upon a complete mechanistic set that includes the formation of mid‐chain radicals through backbiting and their subsequent reaction, and contains no assumptions on how the rate coefficient for cross‐termination of mid‐chain and end‐chain radicals is related to the two homo‐termination rate coefficients. After a thorough statistical analysis, the results of the fitting are combined with other recent literature data to provide a complete set of individual rate coefficients for the butyl acrylate system. Monomer addition to a mid‐chain radical is estimated to be slower than addition to a chain‐end radical by a factor of more than 400. The termination of two mid‐chain radicals is estimated to be two orders of magnitude slower than termination of two end‐chain radicals, with the cross‐termination rate coefficient close to the geometric mean.

Formation of a mid‐chain radical by intramolecular chain transfer to polymer by a chain‐end radical.  相似文献   


3.
In this study the effect of temperature on the generation of free radicals accompanying the decomposition of benzoyl peroxide in poly(methyl methacrylate) was studied. The concentration of the chain-end radicals was determined by the ESR method. The known nine-line spectrum of the chain-end radicals of poly(methyl methacrylate) was observed. This spectrum was affected by the contribution of chain radicals at higher temperatures. The dependence of the chain-end radical concentration on the annealing temperature of polymer found for different pressures gives information on the conditions under which free radicals arise and decay in the temperature range between 90 and 170°C at pressures ranging from 2000 to 12000 atm.  相似文献   

4.
The ESR spectrum of the chain-end radical RCF2CF2* detected in Nafion perfluorinated membranes exposed to the photo-Fenton reagent was accurately simulated by an automatic fitting procedure, using as input the hyperfine coupling tensors of the two F alpha and two F beta nuclei as well as the corresponding directions of the principal values from density functional theory (DFT) calculations. An accurate fit was obtained only for different orientations of the hyperfine coupling tensors for the two F alpha nuclei, indicating a nonplanar structure about the C alpha radical center. The fitted isotropic hyperfine splittings for the two F beta nuclei in the Nafion radical, 24.9 and 27.5 G, are significantly larger than those for the chain-end radical in Teflon (15 G), implying different radical conformations in the two systems. The excellent fit indicated that the geometry and electronic structure of free radicals can be obtained not only from single-crystal ESR spectroscopy, but also, in certain cases, from powder spectra, by combination with data from DFT calculations. The optimized structures obtained by DFT calculations for the CF3CF2CF2CF2* or CF3OCF2CF2* radicals as models provided additional support for the pyramidal structure determined from the spectral fit. Comparison and analysis of calculated and fitted values for the hyperfine splittings of the two F beta nuclei suggested that the radical detected by ESR in Nafion is ROCF2CF2*, which originates from attack of oxygen radicals on the Nafion side chain. The combination of spectrum fitting and DFT is considered important in terms of understanding the hyperfine splittings from 19F nuclei and the different conformations of fluorinated chain-end-type radicals RCF2CF2* in different systems, and also for elucidating the mechanism of Nafion fragmentation when exposed to oxygen radicals in fuel cell conditions.  相似文献   

5.
Gamma radiation of poly (lactide-co-glycolide) raw polymers and processed microspheres under vacuum and at 77 K results in the formation of a series of free radicals. The resulting powder electron paramagnetic resonance (EPR) spectrum contains a distribution of several different radicals, depending on the annealing temperature, and is therefore difficult to interpret. By utilising the selectivity of the electron nuclear DOuble resonance (ENDOR) and associated ENDOR induced EPR (EIE) techniques, a more direct approach for the deconvolution of the EPR spectrum can be achieved. Using this approach, the radiolytically induced CH3 *CHC(O)R- chain scission radical was identified at 120 K by simulation of the EIE spectrum. At elevated temperatures (250 K), this radical decays considerably and the more stable radicals -O*CHC(O)-, CH3 *C(OR)C(O)- and CH3 *C(OH)C(O)- predominate. This work demonstrates the utility of the EIE approach to supplement and aid the interpretation of powder EPR spectra of radicals in a polymer matrix.  相似文献   

6.
A new instationary polymerization system is presented including, as an essential element, the complete deactivation of all active radicals by reaction with an inhibitor at a certain time after chain initiation. The complete kinetic scheme, the set of differential equations, as well as the analytical solutions are presented. A proof is presented that the reaction with the inhibitor during the quench period dominates any other possible reaction such as propagation and bimolecular termination. As a result, the radical spectrum present at the beginning of the quench period is converted (almost) completely unchanged and instantaneously into a polymer chain length distribution. The quenched radical spectrum appears as a single additional peak in the experimentally observable total chain length distribution. In the case of δ‐pulse initiation the analytical solutions of the differential equations reduce to a simple poisson distribution for the radical concentrations as a function of time. Theoretical expressions for the maximum and the points of inflections (low and high molecular weight side) were derived and their applicability for the direct determination of kp was tested. All of them turned out to be equally well suited for this purpose.  相似文献   

7.
The quantum-chemical calculations of the hydroxymethyl radical •CH2OH were performed for the first time and a theoretical EPR spectrum of this radical was constructed. The formation of the hydroxymethyl radical in the reaction of methanol oxidation is thermodynamically favorable. The shape and parameters of the constructed spectrum differed from those for radicals experimentally detected in the catalytic oxidation of methanol using the matrix isolation method. However, they are consistent with the spectrum ascribed to the EPR spectrum of •CH2OH observed in the direct photolysis of methanol. This result allows one to refine the identification of the nature of radicals formed in the catalytic reaction of methanol oxidation.  相似文献   

8.
Irradiation of chloro- and bromoalkanes in solid cis-decalin-d18 results in the selective formation (as major paramagnetic species) of alkyl radicals that are specific or the haloalkane solute, in addition to matrix radicals. The method offers a convenient and universal technique for generating, specific alkyl radicals and for examining their powder ESR spectrum. Examples of the generation of chain-end, penultimate and interior alkyl radicals are given. Computer calculations, in which spectra of penultimate and interior radicals are added, clearly demonstrate that quite extensive amounts of interior radicals can be present in a radical mixture, without considerably affecting the composite spectrum.  相似文献   

9.
Main chain polymeric radicals from several acrylic polymers, produced by laser flash photolysis at 248 nm in liquid solution, have been studied using direct detection time-resolved electron paramagnetic resonance (TREPR) spectroscopy at 9.5 GHz. Highly isotactic poly(methyl methacrylate) (i-PMMA) shows a sharp, well-resolved spectrum at about 95 degrees C. Using synthetic methodology to disrupt the tacticity of i-PMMA, we observed different fast-motion hyperfine coupling constants for the main chain radicals. By raising the temperature of observation, we returned the coupling constants to the same value as those in the highly isotactic sample. This result is related qualitatively to the degree of stiffness of the polymer chains as a function of tacticity. The concept is tested further by comparison to two other acrylic polymers with bulky side chains: poly(fluorooctyl methacrylate) (PFOMA) and poly(adamantyl methacrylate) (PAMA), whose main chain radicals show significant line broadening even at 110 degrees C. Solvent effects on both spectral appearance (the alternating line-width effect) and kinetic decays (attributed to T1 relaxation) are also presented and discussed in terms of main chain conformational motion.  相似文献   

10.
Alkoxy radicals are important intermediates in the formation of tropospheric ozone. The spectroscopic identification and characterization of these species are important for understanding their chemistry in the atmosphere. In this work, we report the observation of the laser induced fluorescence (LIF) excitation spectrum of cycloheptoxy radical. The spectrum was assigned preliminary to the lowest energy twist-chair conformer (TC-i) of cycloheptoxy. The whole picture of the interconversions at ground state between different conformers of cycloheptoxy radicals was described by density functional theory calculations. The results revealed that despite the ring strain, the seven-membered ring alkoxy radical could exist in the supersonic jet-cooled condition. The decomposition and the low energy barrier pseudorotation between twist-chair conformers might be the reason of the much quieter spectrum of cycloheptoxy compared with the LIF spectrum of cyclohexoxy.  相似文献   

11.
A radical allylation reaction without tin: The xanthate group in aliphatic xanthates can be replaced by an allyl unit [Eq. (a)]. This radical chain reaction is propagated by ethyl radicals generated by extrusion of sulfur dioxide from ethanesulfonyl radicals, which are themselves derived from allyl ethyl sulfone.  相似文献   

12.
Melanin, a ubiquitous, heterogeneous biological polymer composed of many different monomers, contains a population of stationary, intrinsic semiquinone-like radicals. Additional extrinsic semiquinone-like radicals are reversibly photogenerated with visible or UV irradiation. The free radical chemistry of melanin is complex and not well characterized, especially the photochemistry of melanin in the presence of oxygen. To determine directly how melanin reacts in the presence of oxygen, time-resolved electron paramagnetic resonance (TREPR) spectroscopy was used to examine melanin free radical chemistry in human retinal pigment epithelium (RPE) cells under aerobic and anaerobic conditions. A TREPR difference spectrum was used to explore the nature of melanin chemistry in the presence of oxygen. The position and symmetrical line shape of the TREPR three-dimensional difference spectrum shows that when reactive oxygen species (ROS) are scavenged, only one of the two or more chemically different melanin free radical species participates in ROS scavenging. This protective melanin radical species exists in both the extrinsic and intrinsic populations of melanin free radicals, allowing melanin to protect the RPE from toxic species in both the light and dark.  相似文献   

13.
The ESR spectrum of a radical produced by photolytically generated t-butoxy radicals and cyclopropene in solution is reported. Arguments are presented for an assignment of the spectrum to the cyclopropenyl radical (CH)3 undergoing fast exchange between equivalent distorted re structures.  相似文献   

14.
Allyl free-radical intermediates are detected by ultraviolet absorption at 255 mu in poly(vinyl chloride) irradiated at ?196°C and stored at 25°C. In vacuum at 25°C, allyl radicals are converted into polyenyl free radicals and polyenes. From the nature of allyl radical decay in vacuum, radical chain transfer between polyenyl radicals and poly(vinyl chloride) is inferred. Allyl and polyenyl free radicals are scavenged by oxygen on post-irradiation storage in air.  相似文献   

15.
The electron spin resonance spectrum of gamma-irradiated octadecyl methacrylate (m.p. ≈ 12°C.) was due to a mixture of three radicals formed by (1) loss of a hydrogen atom from the paraffin chain, (2) addition of a hydrogen atom to the double bond, and (3) addition of a monomer molecule to radicals formed by (1) or (2). On warming monomer added to radicals (1) and (2) between ?170 and ?50°C., and above ?50°C. the spectrum was solely due to propagating methacrylate radicals. The total radical concentration decreased slightly at ?150°C. and was then constant up to ?30°C. A marked decrease in radical concentration occurred from ?30 to +12°C., it took place rapidly and reached an equilibrium value after each successive increase in temperature. Differential thermal analysis indicated a solid—solid phase change at ?30°C. When the sample was kept at 0°C. there was no further decrease in radical concentration even with 50% conversion to polymer. With 2% added chloranil the (chloranil)? was observed to be of about the same concentration as methacrylate radicals. The initial total radical concentration was lower and decreased to zero by 0°C. on warming. No polymer was obtained.  相似文献   

16.
The photosensitized degradation of poly(L ‐lactic acid) (PLA) via an anionic reaction process was studied using spectrophotometry, electron spin resonance (ESR), and gel permeation chromatography (GPC) measurements. PLA film doped with N,N,N′,N′‐tetramethyl‐p‐phenylenediamine (TMPD) was irradiated at 77 K using UV light (λc = 356 nm) by which the PLA matrix itself cannot be directly excited. After photoirradiation, a new broad absorption band appeared over the original spectrum due to TMPD+ ·, which was produced by two‐photon ionization. The ESR spectrum of the irradiated sample indicated the presence of the TMPD+ · radical and main‐chain scission radical of PLA. During the thermal annealing at 0 °C, the latter radical changed to another radical species by dehydrogenation of the alpha hydrogen of the PLA main chain. TMPD+ · was extremely stable at room temperature for 7 d. However, by thermal annealing at 40 °C, all the radicals decayed due to the enhanced molecular motions near Tg of PLA (58.7 °C). Spectral simulation for the obtained ESR spectra revealed the relative amounts of four radicals: TMPD+ ·, a main‐chain scission radical, a main‐chain tertiary radical, and an unknown radical. The last one was tentatively assigned to the PLA radical anion because of its short decay time. GPC measurements clearly indicated a decrease in the molecular weight of PLA after irradiation. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 706–714, 2001  相似文献   

17.
Photopolymerization of methacrylic monomers yields samples with trapped radicals that are easily detected by electron paramagnetic resonance (EPR) spectroscopy. Despite its simplicity, there is no general agreement about the interpretation of this spectrum, in particular, about the role of methylene β protons. An extensive ENDOR study of the propagating radical in photopolymerized dimethacrylates has been carried out in order to obtain detailed information about methylene hyperfine couplings and, thus, about radical conformation. It is shown that literature models are not able to reproduce the ENDOR results and that only accurate fitting of ENDOR spectra obtained by saturating the EPR spectrum at different positions gives reliable information about radical conformation, thanks to the exploitation of conformational selectivity. It turns out that most radicals are in the minimum energy conformation, but any possible conformation is assumed by non negligible fractions of radical.  相似文献   

18.
The behaviors of free radicals produced in polyethylene irradiated with ultraviolet light and electron beams were compared in connection with primary processes of radical formation and trapping regions of free radicals. In the case of irradiation with ultraviolet light, an ESR spectrum observed at ?196°C immediately after irradiation is an eight-line spectrum due to alkyl radicals of the type ? CH2? ?H? CH3, while in the case of ionizing radiation, a six-line spectrum due to ? CH2? ?H? CH2? was observed. The former radicals are produced by the Norrish type I reaction of the carbonyl groups contained in the polymer, followed by radical rearrangement; and the latter are formed by dissociation of hydrogen atom from the excited state of the polymer or ion-molecular reactions. From the sensitivity to oxygen molecules, it was deduced that free radicals are trapped in amorphous regions after ultraviolet irradiation, but mainly in crystalline regions after irradiation with electron beams. Saturation studies of ESR spectra seem to support this conclusion.  相似文献   

19.
The high-temperature (>120C) electron paramagnetic resonance (EPR) spectrum of solutions of polyphenylacetylene have been deconvoluted into the spectra of two separate radicals, a delocalized π radical, whose EPR spectrum consists of a single 15-G wide Gaussian line comprising about 90% of the total signal and a second, more localized π radical exhibiting complex hyperfine structure in its EPR spectrum. Some possible structures for the minor component radical are suggested and their hyperfine splitting constants calculated using molecular orbital theory.  相似文献   

20.
本文研究了GY-131医用级聚甲基乙烯基硅氧烷(PMVS)在辐照交联中的自由基产生和衰减的ESR潜,以及SiO2填料对交联的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号