首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-peptide mimetics based on an anthranilamide ‘scaffold’ possessing fragments that mimic Lys2, Tyr13 and Arg17 in ω-conotoxin GVIA have been prepared. Compounds were assayed for binding to the voltage-gated calcium channels Cav2.2 (‘N-type’) and Cav2.1 (‘P/Q-type’) in rat brain. The primary synthetic target, 2-(6-amino-hexanoylamino)-5-(3-guanidino-propoxy)-N-[4-(4-hydroxyphenoxy)-phenyl]-benzamide (2a), exhibited low μM binding to Cav2.2 and was more than 30-fold selective for Cav2.2 over Cav2.1.  相似文献   

2.
Low-voltage-gated calcium channels (LVGCCs; Cav3.1-3.3) represent promising drug targets for epilepsy, pain, and essential tremor. At present, modulators with heightened selectivity for a subtype of LVGCCs are still highly desired. In this study we explored three classes of Buxus alkaloids and identified 9(10/19)abeo-artanes Buxusemine H and Buxusemine L (BXSL) as an unprecedented type of Cav3.2 inhibitors. Particularly, BXSL exhibited Cav3.2 inhibition comparable to Z944, a non-subtype-selective LVGCCs inhibitor under clinical trial. While lacking specificity for Cav3.3, BXSL showed a 30-fold selectivity of Cav3.2 over Cav3.1. As compared to several well-known inhibitors, the experimental and computational studies suggested BXSL exhibits a distinct binding mode to Cav3.2, notably through the essential interaction with serine-1543 in domain III. Furthermore, BXSL showed minimal impact on various recombinant and native nociceptive ion channels, while significantly reducing the excitability of isolated mouse dorsal root ganglion neurons. Animal studies in wild-type and Cav3.2 knock-out mice revealed that BXSL (5 mg/kg), by inhibiting Cav3.2, exhibits an analgesic effect equivalent to Z944 (10 mg/kg) or mibefradil (10 mg/kg). Moreover, we proposed a structural rationale for the high selectivity of 9(10/19)abeo-artane-type alkaloids towards Cav3.2 over Cav3.1. This study introduces a novel analgesic agent and valuable molecular insight for structure-based innovative Cav3.2 drug development.  相似文献   

3.
The interaction of the organotin compounds trimethyltin(IV) and tributyltin(IV) chlorides with the calcium pump from sarcoplasmic reticulum membranes was studied. It was found that the presence of calcium fully protects against the inhibitory effect of both organotin compounds. However, the apparent affinity of the protein for tributyltin chloride is two orders of magnitude higher than for trimethyltin chloride (K0.5 values of 14 µ m and 1.4 m m , respectively). Studies of intrinsic fluorescence of the Ca2+‐ATPase and enzyme phosphorylation by ATP and Pi support the hypothesis that the inhibitory properties of trialkyltin compounds are due to the inhibition of calcium binding to the high‐affinity binding sites of the Ca2+‐ATPase. This suggests that there is a specific interaction between the trialkyltin compounds and the calcium binding sites of the protein. The effect of trialkyltin compounds on Ca2+‐ATPase was also addressed by differential scanning calorimetry to assess the thermal transition of the protein denaturation, and by infrared spectroscopy in the absorption region corresponding to the amide I band (1600–1700 cm?1) to observe changes in the secondary structure of the protein. We conclude that the interaction of trialkyltin compounds with Ca2+‐ATPase reduces the affinity and cooperativity for calcium binding and, consequently, the inhibition of ATPase activity. These events are accompanied by changes in the secondary structure of the protein, including loss of α‐helix structure and a concomitant increase in protein aggregation or unfolding. The activity of trialkyltin compounds on the Ca2+‐ATPase is discussed in relation to their solubility in water and in the lipid phase. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Calcium is an important intracellular messenger in all cells, represented here by nerve cells and osteoblast-like (OBL) cells. In neurons the intracellular calcium signal is related, e.g., to bioelectric phenomena. In OBL cells the intracellular calcium concentration ([Ca2+]i) plays a role in the intercellular communication via gap junction channels. [Ca2+]i might be affected by lead (Pb2+). In the nervous system even low Pb2+ concentrations impair learning and memory functions. Considering long-term potentiation (LTP) as a model for learning and memory it has been proven that the generation and maintenance of LTP is reduced by Pb2+ (1–10 μM). As the induction of LTP depends on a rise of [Ca2+]i, we examined the effects of Pb2+ on [Ca2+]i and on currents through calcium permeable membrane pores in dorsal-root ganglion (DRG) neurons, using calcium measurements (Fura-2/ AM) and whole cell patch clamp techniques. To study the effects of Pb2+ on intercellular communication via gap junctions we used rat OBL cells investigating interactions of Pb2+ with electric cell coupling. Furthermore, we examined calcium release activated channel currents (CRACCs) of these cells. Lead (1–10 μM) reduced the stimulated increase of [Ca2+]i in a concentration dependent manner, by reducing both voltage-activated calcium channels (VACCs) and N-methyl-D-aspartate activated calcium channels (NACCs) in neurons. Voltage-activated calcium channel currents (VACCCs) were reduced by Pb2+ with an IC50 of 0.46 μM. The effect was quite specific as voltage activated sodium and potassium channel currents were not significantly altered in the same concentration and voltage range. Furthermore, this effect was not voltage dependent and only partly reversible. A 100-fold higher concentration of Pb2+ (IC50 of 46 μM) was found for the reduction of NACC currents. A small portion of this effect was not reversible. Other agonist activated channel currents (kainate and quisqualate) are not affected. In OBL cells, the calcium entry through calcium release activated channels (CRACs) was reduced in a concentration dependent manner by extracellular Pb2+, the concentrations were between 2 and 20 μM. Surprisingly the electric coupling through gap junction channels in OBL cells was not reduced by either extracellular or intracellular Pb2+ (5–25 μM). Received: 1 August 1997 / Revised: 24 October 1997 / Accepted: 30 October 1997  相似文献   

5.
《Chemistry & biology》1997,4(11):867-878
Background: Photolabile chelators that release Ca2+ upon illumination have been used extensively to dissect the role of this important second messenger in cellular processes such as muscle contraction and synaptic transmission. The caged calcium chelators that are presently available are often limited by their inadequate changes in Ca2+ affinity, selectivity for Ca2+ over Mg2+ and sensitivity to light. As these chelators are all based on nitrobenzyl photochemistry, we explored the use of other photosensitive moieties to generate a new caged calcium with improved properties.Results: Azid-1 is a novel caged calcium in which a fluorescent Ca2+ indicator, fura-2, has been modified with an azide substituent on the benzofuran 3-position. Azid-1 binds Ca2+ with a dissociation constant (Kd) of ∼230 nM, which changes to 120 μM after photolysis with ultraviolet light (330–380 nm). Mg2+ binding is weak (8–9 mM Kd) before or after photolysis. Azid-1 photolyzes with unit quantum efficiency, making it 40–170-fold more sensitive to light than caged calciums used previously. The photolysis of azid-1 probably releases N2 to form a nitrenium ion that adds water to yield an amidoxime cation; the electron-with-drawing ability of the amidoxime cation reduces the chelator's Ca2+ affinity within at most 2 ms following a light flash. The ability of azid-1 to function as a caged calcium in living cells was demonstrated in cerebellar Purkinje cells, in which Ca2+ photolytically released from azid-1 could replace the normal depolarization-induced Ca2+ transient in triggering synaptic plasticity.Conclusions: Azid-1 promises to be a useful tool for generating highly controlled spatial and temporal increases of Ca2+ in studies of the many Ca2+-dependent biological processes. Unlike other caged calciums, azid-1 has a substantial cross section or shows a high susceptibility for two-photon photolysis, the only technique that confines the photochemistry to a focal spot that is localized in three dimensions. Azide photolysis could be a useful and more photosensitive alternative to nitrobenzyl photochemistry.  相似文献   

6.
A consistent set of G B , H B , and S B parameters have been determined from ion specific electrode, calorimetric, and spectrophotometric studies for the binding of Ca2+ and Mg2+ to bovine calmodulin at pH=7.0 and an ionic strength I of 0.113M. A non-linear least squares analysis of calcium specific ion electrode data yields, on a molar basis, four calcium dissociation constants: 10–7 for the first site, 10–5 for the fourth site, and two constants between these values. Both calorimetric experiments and an indicator method provide evidence that Mg2+ binds to calmodulin, probably at the same sites as Ca2+, but with affinities about 100 times smaller: 4×10–5 for the first site and 2×10–3 for the fourth. Calorimetric titrations on Ca2+ binding to calmodulin in three buffers are consistent with 0.46 protons released upon binding at all four sites and yield an average H B per site of 5.6 and 7.9 kJ-mol–1 for Ca2+ and Mg2+, respectively. The entropy of the system increases by 524 and 361 J-K–1-mol–1 when Ca2+ and Mg2+, respectively, bind to four sites on calmodulin, i.e., the selectivity of calmodulin for Ca2+ is primarily derived from entropy effects. Further analysis based on elimination of the entropy term for the metal ions demonstrates that calmodulin bound to Ca2+ has a larger entropy than the unbound calmodulin; the opposite is true for calmodulin bound to Mg2+. These analyses are consistent with the hypothesis that Ca2+ forms tight complexes at all sites on calmodulin and that release of waters of hydration upon binding is the source of the increase of entropy in the system.  相似文献   

7.
A new fluorescent Ca2+ indicator STDln-AM for detecting [Ca2+], transients in cultured smooth muscle cells is presented. By making a comparison, the difference between STDln and fluo-3 is discussed in detail. Using the new Ca2+ indicator, the mechanism of 5-hydroxytryptamino (5-HT) induced intracellular calcium dynamics in stomach fundus smooth muscle cells (SFSMC) of rats is investigated. It is shown that in contrast with fluo-3, STDln is uniformly distributed in the cytosolic compartment but excluded from the nucleus, when it is transfected into cells. This feature makes it a real cytosol Ca2+ indicator and can reflect changes of cytosol [Ca2+] more accurately than that of fluo-3. In addition, STDln responds to the [Ca2+], transients more sensitive and faster than fluo-3. The results also show that, the L-type Ca2+ channel inhibitor Mn9202 and the PLC inhibitor Compound 48/80 can significantly inhibit the [Ca2+], elevation induced by 5-HT, while the PKC inhibitor D-Sphingosine can enhance the effect of 5-HT. The results suggest that 5-HT acts by the way of 5-HT2 receptors on SFSMC, then through 5-HT2 receptors coupled IP3/Ca2+ and GC/PKC double signal transduction pathways to make Ca2+ release from intracellular Ca2+ stores and Ca2+ influx possibly through L-type calcium channels.  相似文献   

8.
Lewis acidic properties of transition aluminas whose surfaces have been doped with alkaline-earth metal cations (Ca2+ and Ba2+) were studied by means of the room temperature adsorption of carbon monoxide. The vibrational features of CO adsorbed at the surface of doped aluminas were investigated by IR spectroscopy in comparison with pure parent aluminas, while the quantitative and energetic features were studied by adsorption microcalorimetry. Various CO adspecies were found to form at the surface of both pure and doped-alumina, owing to the structural heterogeneity of the Al2O3 surface and to the presence of alkaline-earth metal cations. The surface heterogeneity was revealed by different vco stretching frequencies, namely vco≈2230, 2218 and 2205 cm−1 for coordinatively unsaturated tetrahedral Al3+ cations in different crystallographic configurations, and vco≈2186 and 2172 cm−1 for coordinatively unsaturated Ca2+ and Ba2+ cations, respectively. Heats of adsorption of ≈80, 70 and 55 kJ/mol were assigned to the formation of Al3+/CO complexes, ≈45 kJ/mol for Ca2+/CO and ≈30 kJ/mol for Ba2+/CO complexes. The latter value was estimated through a correlation curve existing between vco stretching frequencies and adsorption enthalpies. This correlation, already proposed in the past for CO adsorbed on non-d/d0/d10 metal cations, has been revisited and confirmed here, by including Al2O3 data for which an apparent lack of correlation between the two parameters was first observed. With respect to pure alumina, the population of Lewis acidic sites was found to be significantly depressed by the presence of alkaline-earth cus metal cations. These acidic sites are intrinsically weaker than tetrahedral cus Al3+ cations, as witnessed by smaller upward shifts of the vco stretching frequencies with respect to CO gas and lower heats of adsorption, in accordance with expectations from the charge/ionic radius ratios. Ca2+ cations were found to compete in adsorbing CO with Al3+ cations more efficiently than the larger Ba2+ cations. In the case of CaO/Al2O3 systems outgassed at 1023 K, a thin surface layer of calcium aluminate, not detected by XRD or HRTEM, was suggested to form.  相似文献   

9.
Low-energy (LE) and high-energy (HE) collisionally activated decompositions (CAD) of calcium/peptide complexes of the form [M-H+Ca]+ and [M+Ca]2+ reflect the site of calcium binding in various gas-phase peptides that are models of the calcium binding site III of rabbit skeletal troponin C. The Ca2+ binding sites involve an aspartic acid, glutamic acid, and asparagine, which are in the metal-binding loops of calcium-binding proteins. Both fast atom bombardment (FAB) and electrospray ionization (ESI) were used to generate the metal/peptide complexes. When submitted to LE CAD, ESI-produced Ca2+/peptide complexes undergo fragmentations that are controlled by Ca2+ binding and provide information on the Ca2+ binding site. The LE CAD spectra are simple, indicating that Ca2+ binding involves specific oxygen ligands including acidic side chains and that only a few low-energy fragmentation channels exist. The HE CAD spectra of FAB-produced Ca2+/peptide complexes are more complex, owing to the introduction of high internal energy into the precursor ion. Interactions of the other alkaline-earth metal ions Mg2+ and Ba2+ with these peptides reveal that the ligand preferences of these metal ions are slightly different than those of Ca2+.  相似文献   

10.
High performance liquid chromatography (HPLC) micro-fractionation was successfully coupled to an automated 45Ca2+ uptake assay using GH4C1 cells for the separation of natural product extracts and for the primary detection of their calcium antagonistic components. The reliability of the procedure was first established with a reference solution consisting of pure compounds with a known effect on the Ca2+ uptake. No loss of activity was observed to occur after HPLC micro-fractionation. Extracts of Peucedanum palustre and Pinus sylvestris, showing high and no inhibition of Ca2+ uptake as total extracts, respectively, were analysed and the inhibitory activity of the P. palustre extract could be traced to two components, identified as columbianadin and isoimperatorin. As expected, no significant inhibition was observed with the micro-fractionated P. sylvestris samples. In summary, the procedure was found to be applicable for primary detection of calcium antagonistic components in complex matrices and to significantly reduce the time previously needed for bioactivity-guided isolation.  相似文献   

11.
Synthesis and Crystal Structure of a Calciumcarbide Chloride Containing a C34? Unit, Ca3Cl2C3 Ca3Cl2C3 was prepared from calcium, CaCl2 and graphite in sealed tantalum capsules. Red, transparent crystals were obtained from heating the mixture to 900°C (for one day) and annealing afterwards at 780°C for three days. The compound forms a layered structure (Cmcm, Z = 4, a = 384.24(9) pm, b = 1340.7(3) pm, c = 1152.6(3) pm, R = RW = 0.036 for 481 independent intensities) with alternating stacks of double layers of Ca2+ and monolayers of Cl?. The double layers of calcium contain allylenide ions, C34?. The latter exhibit C2v symmetry, a bond angle (C? C? C) of 169.0(6)° and a C? C separation of 134.6(4) pm.  相似文献   

12.
A new fluorescent Ca2+ indicator STDln-AM for detecting [Ca2+], transients in cultured smooth muscle cells is presented. By making a comparison, the difference between STDln and fluo-3 is discussed in detail. Using the new Ca2+ indicator, the mechanism of 5-hydroxytryptamino (5-HT) induced intracellular calcium dynamics in stomach fundus smooth muscle cells (SFSMC) of rats is investigated. It is shown that in contrast with fluo-3, STDln is uniformly distributed in the cytosolic compartment but excluded from the nucleus, when it is transfected into cells. This feature makes it a real cytosol Ca2+ indicator and can reflect changes of cytosol [Ca2+] more accurately than that of fluo-3. In addition, STDln responds to the [Ca2+], transients more sensitive and faster than fluo-3. The results also show that, the L-type Ca2+ channel inhibitor Mn9202 and the PLC inhibitor Compound 48/80 can significantly inhibit the [Ca2+], elevation induced by 5-HT, while the PKC inhibitor D-Sphingosine can enhance the effect of 5-HT. The results suggest that 5-HT acts by the way of 5-HT2 receptors on SFSMC, then through 5-HT2 receptors coupled IP3/Ca2+ and GC/PKC double signal transduction pathways to make Ca2+ release from intracellular Ca2+ stores and Ca2+ influx possibly through L-type calcium channels.  相似文献   

13.

Background

Superoxide generated by non-phagocytic NADPH oxidases (NOXs) is of growing importance for physiology and pathobiology. The calcium binding domain (CaBD) of NOX5 contains four EF-hands, each binding one calcium ion. To better understand the metal binding properties of the 1st and 2nd EF-hands, we characterized the N-terminal half of CaBD (NCaBD) and its calcium-binding knockout mutants.

Results

The isothermal titration calorimetry measurement for NCaBD reveals that the calcium binding of two EF-hands are loosely associated with each other and can be treated as independent binding events. However, the Ca2+ binding studies on NCaBD(E31Q) and NCaBD(E63Q) showed their binding constants to be 6.5 × 105 and 5.0 × 102 M-1 with ??Hs of -14 and -4 kJ/mol, respectively, suggesting that intrinsic calcium binding for the 1st non-canonical EF-hand is largely enhanced by the binding of Ca2+ to the 2nd canonical EF-hand. The fluorescence quenching and CD spectra support a conformational change upon Ca2+ binding, which changes Trp residues toward a more non-polar and exposed environment and also increases its ??-helix secondary structure content. All measurements exclude Mg2+-binding in NCaBD.

Conclusions

We demonstrated that the 1st non-canonical EF-hand of NOX5 has very weak Ca2+ binding affinity compared with the 2nd canonical EF-hand. Both EF-hands interact with each other in a cooperative manner to enhance their Ca2+ binding affinity. Our characterization reveals that the two EF-hands in the N-terminal NOX5 are Ca2+ specific.

Graphical abstract

  相似文献   

14.
Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary β3-β4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately β3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.  相似文献   

15.
枸橼酸盐抑制泌尿系结石形成的化学基础   总被引:7,自引:0,他引:7  
欧阳健明 《无机化学学报》2004,20(12):1377-1382
本文综述了防石药物枸橼酸及其盐对泌尿系结石形成、抑制和治疗的化学基础,重点讨论了其与钙离子的配位、封闭尿石矿物生长活性位点、抑制草酸钙的成核和生长、增加尿液中尿大分子和枸橼酸浓度、改变尿液pH以及诱导二水草酸钙和三水草酸钙形成,并讨论了抗衡阳离子对枸橼酸盐抑制能力的影响。  相似文献   

16.
采用静态阻垢法评定了膦酰基羧酸聚合物(POCA)、聚丙烯酸(PAA)、丙烯酸-丙烯酸羟丙酯共聚物(T-225)、水解聚马来酸酐(HPMA)等四种羧酸类聚合物阻垢剂对磷酸钙的阻垢性能, 发现在加药量为25 mg/L时几种聚合物对磷酸钙垢的阻垢率分别为100%, 94.6%, 36.2%和30.2%. 采用分子动力学(MD)方法, 模拟计算了四种聚合物与磷酸钙晶体的(110)晶面的相互作用结合能、非键作用能等参数. 结果表明: 聚羧酸与(110)晶面结合能以及非键作用能的大小排序为POCA>T-225>HPMA>PAA, 结合能以及非键作用能越大, 说明聚合物与垢晶体的结合越紧密, 抑制性能越好; 因此它们对磷酸钙阻垢能力大小排序为POCA>T-225>HPMA>PAA. 该理论计算与实验室静态阻垢评定结论一致. 通过对超分子对关联函数的分析, 发现POCA和T-225聚合物中羰基O原子与晶面上Ca2+之间形成了较弱的离子键, 但强度远比非键作用小, 非键作用主要由库仑作用和范德华作用力提供, 且库仑作用的贡献更大. 据此合成了马来酸酐-苯乙烯磺酸钠-丙烯酸羟丙酯(MA-SS-HPA)以及苯乙烯磺酸钠-丙烯酸羟丙酯-亚磷酸(MA-SS-H3PO3)共聚物, 加药量为18 mg/L时对磷酸钙垢的阻垢率分别为94.2%和100%, 性能优于POCA.  相似文献   

17.
The synthesis and structural characterization of mixed oxyfluorides of the type Sr3−xAxAlO4F is reported, where A is either calcium or barium. In these compounds the fluoride and oxide ions are ordered onto two distinct crystallographic sites. There is also an ordering of the alkaline earth cations over two crystallographic sites upon substitution of Ba2+ or Ca2+ for Sr2+. The solid solubility limits extend to x∼1 for substitution of both barium and calcium, but the larger Ba2+ cations show a strong site preference for the ten-coordinate strontium sites, while the smaller Ca2+ cations prefer the eight-coordinate strontium sites.  相似文献   

18.
This paper describes a method that combines a microfluidic device and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI) mass spectrometry to calculate the cooperativity in binding of calcium ions to peptidylarginine deiminase type 2 (PAD2). This example uses only 120 μL of enzyme solution and three fluidic inputs. This microfluidic device incorporates a self-assembled monolayer that is functionalized with a peptide substrate for PAD2. The enzyme and different concentrations of calcium ions are flowed through each of eight channels, where the position along the channel corresponds to reaction time and position across the channel corresponds to the concentration of Ca2+. Imaging SAMDI (iSAMDI) is then used to determine the yield for the enzyme reaction at each 200 μm pixel on the monolayer, providing a time course for the reactions. Analysis of the peptide conversion as a function of position and time gives the degree of cooperativity (n) and the concentration of ligand required for half maximal activity (K0.5) for the Ca2+ – dependent activation of PAD2. This work establishes a high-throughput and label-free method for studying enzyme-ligand binding interactions and widens the applicability of microfluidics and matrix-assisted laser desorption/ionization mass spectrometry (MALDI) imaging mass spectrometry.  相似文献   

19.
Small‐molecule probes for the in vitro imaging of KCa3.1 channel‐expressing cells were developed. Senicapoc, showing high affinity and selectivity for the KCa3.1 channels, was chosen as the targeting component. BODIPY dyes 15 – 20 were synthesized and connected by a CuI‐catalyzed azide–alkyne [3+2]cycloaddition with propargyl ether senicapoc derivative 8 , yielding fluorescently labeled ligands 21 – 26 . The dimethylpyrrole‐based imaging probes 25 and 26 allow staining of KCa3.1 channels in NSCLC cells. The specificity was shown by removing the punctate staining pattern by pre‐incubation with senicapoc. The density of KCa3.1 channels detected with 25 and by immunostaining was identical. The punctate structure of the labeled channels could also be observed in living cells. Molecular modeling showed binding of the senicapoc‐targeting component towards the binding site within the ion channel and orientation of the linker with the dye along the inner surface of the ion channel.  相似文献   

20.
Small-molecule probes for the in vitro imaging of KCa3.1 channel-expressing cells were developed. Senicapoc, showing high affinity and selectivity for the KCa3.1 channels, was chosen as the targeting component. BODIPY dyes 15 – 20 were synthesized and connected by a CuI-catalyzed azide–alkyne [3+2]cycloaddition with propargyl ether senicapoc derivative 8 , yielding fluorescently labeled ligands 21 – 26 . The dimethylpyrrole-based imaging probes 25 and 26 allow staining of KCa3.1 channels in NSCLC cells. The specificity was shown by removing the punctate staining pattern by pre-incubation with senicapoc. The density of KCa3.1 channels detected with 25 and by immunostaining was identical. The punctate structure of the labeled channels could also be observed in living cells. Molecular modeling showed binding of the senicapoc-targeting component towards the binding site within the ion channel and orientation of the linker with the dye along the inner surface of the ion channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号