首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new hydrogen associated paramagnetic centre (g=2.0028±0.0005, A=3±0.5 mT at 77K) was observed in LiNbO3. This centre is identified as an OH2? ion, produced as a result of an electron capture by a diamagnetic OH? ion, substituting the O2? ion in LiNbO3. An experimental procedure for detecting the EPR spectrum of the new centre is established. It is based on the observation of the more rapid destruction of O? and Nb4+ ions under UV-irradiation at 77 K as compared to the OH2? ions obtained after γ-irradiation of LiNbO3 crystals at 77 K.  相似文献   

2.
Low-energy 120 and 150 keV H+ was implanted in z-cut LiNbO3 at room temperature. The fluence of H+ is 5?×?1016 ions/cm2. The damage profiles in LiNbO3 induced by implantation were investigated using Rutherford backscattering/channelling. The damage profiles were extracted using the channelling results. The experimental damage profiles in LiNbO3 were analyzed and compared to the simulated results from TRIM. The results show a good consistency between experimental and simulated results. The present results are useful for the fabrication of H-implanted waveguides of oxide crystals, especially LiNbO3.  相似文献   

3.
For a d8 configuration ion, the 45×45 complete energy matrix, which contains the electron-electron repulsion interaction, the ligand-field interaction, the spin-orbit coupling interaction as well as the Zeeman interaction, has been established. By diagonalizing the complete energy matrix, the local lattice structure, EPR parameters (D, g//, g) and optical absorption spectra for Ni2+ ions doped in LiNbO3 and Al2O3 have been investigated. The local structure distortion parameters ΔR, Δθ1 and Δθ2 are determined for LiNbO3:Ni2+ and Al2O3:Ni2+ systems, simultaneously. These results show that local structure of (NiO6)10− cluster exhibits an elongation distortion in both LiNbO3:Ni2+ and Al2O3:Ni2+ systems, in spite of the different reasons of the elongation in both systems. In addition, we have found that the orbit reduction effect is very important to understand the anisotropic g-factors for Ni2+ ions doped in LiNbO3 and Al2O3 crystals.  相似文献   

4.
Abstract

Two LiNbO3 (X and Y cut) crystals from different companies were implanted by 3.0 MeV Er ions to a dose of 7.5 × 1014 ions/cm2 and 3.5 × 1014 ions/cm2 with different beam current densities, respectively. After annealing at 1060°C in air for 2 hours, one LiNbO3 sample was implanted by 1.5 MeV He ions to a dose of 1.5 × 1016 ions/cm2. The Rutherford backscattering/channeling and prism coupling method have been used to study the damage and optical properties in implanted LiNbO3. The results show: (1) the damage in LiNbO3 created by 3.0 MeV Er ions depends strongly on the beam current density; (2) after annealing at 1060°C in air for 2 hours, a good Er doped LiNbO3 crystal was obtained; (3) there is waveguide formation possible in this Er-doped annealed LiNbO3 after 1.5 MeV He ion implantation. It is suggested that annealing is needed to remove the damage created by MeV Er ions before the MeV He ion implantation takes place, to realize the waveguide laser for Er doped LiNbO3.  相似文献   

5.
Glasses with compositions 25Li2O-(75−x)Bi2O3-x B2O3, with 0?x?30 mol%, have been prepared using the melt quenching technique. The density and the molar volume have been determined. IR spectroscopy is used as a structural probe of the nearest neighbor environment in the glass network. The optical transmittance and reflectance spectrum of the glasses have been recorded in the wavelength range 400-1100 nm. The values of the optical band gap Egopt for indirect transition and refractive index have been determined for 0?x?30 mol%. The average electronic polarizability of the oxide ion αo2− and the optical basicity have been estimated from the calculated values of the refractive indices. Variations in the different physical parameters such as the density, molar volume, optical band gap, refractive index, average electronic polarizability of the oxide ion and optical basicity with B2O3 content have been analyzed and discussed in terms of the changes in the glass structure.  相似文献   

6.
本文根据离子在固体材料中电子阻止截面的实验资料,给出了低能Li+,Be+,B+,C+,N+,O+,F+,Ne+等离子在固体中电子阻止截面Se的经验公式。这些经验公式既能够很好地反映电子阻止本领的Z1和Z2振荡、又能正确地给出Se随离子能量E的变化关系。用这种以实验为基础的Se经验公式和符合于WHB势的核散射函数,计数了从H+到Ne+十种轻离子在非晶Al2O3,SiO2,20/25/Nb不锈钢,LiNbO3和UO2等材料中的投影射程分布的一次至三次矩。将计算值与近几年的实验测量及其他人的计算结果进行了比较,在低能端,我们计算的平均投影射程Rp与实验符合得更好。 关键词:  相似文献   

7.
A new method is presented, allowing the nearly complete oxidization of lithium niobate crystals (LiNbO3), doped with large amounts of iron oxide (0.05–3 wt. % Fe2O3) utilizing annealing at 700 °C in the presence of externally applied electric fields. The treatment results in a concentration ratio of Fe2+ and Fe3+ ions of less than 2×10-3. Strong oxidization of iron in LiNbO3 reduces the photorefractive effect and is therefore of particular interest for nonlinear-optical applications. PACS 42.65.-k; 66.30.Hs; 71.55.-i  相似文献   

8.
In the temperature range 100–450 K, we have investigated Raman spectra of congruent and stoichiometric LiNbO3 crystals. We have found that, in this temperature range, frequencies and widths of all the spectral lines depend linearly on temperature. However, the width of the line that corresponds to vibrations of the A1(TO) symmetry of Li+ ions depends on temperature much more weakly than the width of the line that corresponds to vibrations of the A1(TO) symmetry of Nb5+ ions. This fact indicates that the anharmonicity of vibrations of Nb5+ ions along the polar axis is much stronger compared to vibrations of Li+ ions. It is likely that this anharmonicity is noticeably contributed by O2? ions, which are characterized by an anharmonic potential, vibrations of which, according to calculations from first principles, are mixed with vibrations of Nb5+ ions. The anharmonicity of vibrations of O2? ions is evidenced by a strong temperature dependence of the width of the line that corresponds to vibrations of the A1(TO) symmetry of O2? ions perpendicularly to the polar axis. We have found that the temperature dependence of the intensity of lines that correspond to fundamental vibrations is nonmonotonic. At the same time, the temperature dependence of the intensity of “superfluous lines” is strictly linear. It is likely that this behavior of the intensities of lines of fundamental vibrations is related to the occurrence of clusters and microstructures in the crystal structure.  相似文献   

9.
Luminescence spectra of gradient-activated LiNbO3:Yb, Er crystals with predefined concentration profiles of the optical centers are studied in different spectral regions. The process of electronic excitation energy transfer in the Yb3+–Er3+ system inside the LiNbO3 matrix is calculated and dependences of the quantum efficiency of the up-conversion processes for the green and red luminescences of erbium ions on the time of excitation energy deactivation are obtained.  相似文献   

10.
We report on63Cu-NQR frequency νNQR measurements on various high-T c superconductors. An empirical relationship betweenT c and νNQR is presented. We attribute this finding to variations in the valence state of the in-plane Cu ions which, due to the unusual electric polarizability of the O2? ions, depends sensitively on the Cu?O distance.  相似文献   

11.
7Li NMR measurements have been performed to study milling effects on ionic diffusion in lithium cobalt oxide, LiCoO2 and piezoelectric compound, LiNbO3 prepared by mechanical milling method. The milling process gives quite different effects on NMR spectra of these compounds. Both 7Li MAS and static NMR spectra of the milled LiCoO2 show the line broadening with increasing milling time. 59Co static spectra also show specific changes in the line shape with increasing milling time. These results would be attributed to the change in an electronic state of Co 3d orbitals because of charge compensation associated with oxygen vacancies and/or defects. 7Li static NMR spectrum of milled LiNbO3 shows complicated line shape with increasing milling time. It is explained by superposition of two spectra arising from mobile Li+ ions and non-mobile ones settled on the fixed site. It is shown that the ratio of mobile Li+ ions increases up to a maximum of 9.4% with increasing milling time. Milling effects on the Li+ ionic diffusion in LiCoO2 and LiNbO3 are discussed in connection with changes in local structure.  相似文献   

12.
We have observed the Mössbauer Faraday effect in nonstoichiometric Fe3O4 by using a Mössbauer polarimeter. Experimental results demonstrated that electronic hopping above the Verwey temperature between Fe2+?Fe3+ ions on the octahedral sites is a localized phenomenon only and the recoilless fractions of57Fe nuclei in Fe3?vO4 (v=0.02) are 0.71 for A sites and 0.62 for B sites, respectively.  相似文献   

13.
This study aims to investigate the effect Fe ions doped into Ca12Al14O33 (C12A7, 12CaO-7Al2O3) cement compound on its thermal and optical properties. Polycrystalline samples of Ca12Al14?xFexO33 (where x?=?0.0, 0.5, and 1.0) were prepared via a solid state reaction in an oxygen atmosphere. The lattice constant of Ca12Al14O33 determined using an XRD technique was in excellent agreement with first-principles calculations. With increasing Fe concentrations, the lattice constants were found to have increased. Additionally, the optical gaps of Ca12Al14?xFexO33, (x?=?0, 0.25, 0.5, and 1.0) were 3.9?eV, 3.77?eV, 3.75?eV and 3.63?eV, respectively. It was clearly seen that the optical gap decreased with increasing Fe concentrations. As revealing by first-principles calculations, the optical gap was directly related to the electronic transition from the occupied electronic state of extra-framework O2? ions (as free O2? ions inside nano-cage) to the conduction band. Moreover, we also found that the thermal conductivity Ca12Al14?xFexO33 was reduced when the larger atomic mass and atomic radii Fe was substituted into Al sites. Hence, this indicated that Fe3+-substitution into Al3+ sites of Ca12Al14O33 cement directly affected both its optical gap and thermal conductivity.  相似文献   

14.
A series of LiNbO3 crystals doped with various concentrations of ZnO and fixed concentrations of RuO2 and Fe2O3 have been grown by the Czochralski method from the congruent melts. The type of charge carriers was determined by Kr+ laser (476 nm) and He–Ne laser (633 nm). The results revealed that the holes were the dominant charge carriers at blue light irradiation. Dual-wavelength and two-color techniques were employed to investigate the nonvolatile holographic storage properties of Ru:Fe:LiNbO3 and Zn doped Ru:Fe:LiNbO3 crystals. The essential parameters of blue nonvolatile holographic storage in Zn:Ru:Fe:LiNbO3 crystals were enhanced greatly with the increase of Zn concentration. This indicates that the damage resistant dopants Zn2+ ions enhance the photorefractive properties at 476 nm wavelength instead of suppressing the photorefraction. The different mechanisms of blue photorefractive and nonvolatile holographic storage properties by dual wavelength recording in Zn:Ru:Fe:LiNbO3 crystals were discussed.  相似文献   

15.
Local atomic structures around the Lu3+ ion in a 0.1?mol%?LuO1.5-doped fine-grained Al2O3, in which the doped Lu3+ ions segregate to the grain boundaries, was characterized by Lu L3-edge X-ray absorption fine structure. Structural parameters in LuO1.5-doped Al2O3 were determined by a curve-fitting method, and the results showed that six O2? ions coordinate with the Lu ion in LuO1.5-doped Al2O3. In addition, it was also revealed that the Lu–O interatomic distance in Lu-doped Al2O3 was close to that in Lu2O3, which was about 19% longer than the Al–O interatomic distance in undoped Al2O3. The present results indicated that the local atomic structures around Lu in Al2O3 are close to that in Lu2O3. It is thus supposed that atomic distances between Al3+ and O2? ions in the vicinity of Lu-segregated grain boundaries are shortened in comparison with that in undoped Al2O3. A first-principles molecular orbital calculation was performed for the [Al2O9]?12 model cluster, and the shortening of the Al–O interatomic distance was found to have an effect of increasing the ionicity in Al3+ ions.  相似文献   

16.
Polarized visible and infrared emission characteristics of Er3+ ions in vapor-transport-equilibration (VTE)-treated LiNbO3 crystals codoped with different concentrations of Zn and Er were investigated in comparison with corresponding as-grown crystals. The results show that the VTE treatment leads to substantial spectral changes of Er3+ emissions at 0.65, 0.98 and 1.5 μm regions, and the spectral changes in the 0.98 and 1.5 μm regions appear to be Zn-concentration-dependent. It is concluded in combination with X-ray powder diffraction results and optical absorption characteristics reported previously that the VTE treatment resulted in crystalline phase transformation with respect to Er3+ ions from original LiNbO3 to ErNbO4 phase in all crystals studied. The formation of the ErNbO4 phase and the Zn2+ codopants are responsible for the VTE-induced substantial spectral changes. The emission characteristics of the ErNbO4 precipitates in the Zn/Er-codoped crystals are found to be very different from those of the ErNbO4 precipitates in the only Er-doped crystal in the infrared region, and the difference is attributed to the influence of the Zn2+ codopant on the Er3+ ion environment. The mechanism of the crystalline phase transformation is qualitatively explained from the viewpoint of the declined solubility of Er3+ ion in a Li-rich LiNbO3 crystal and from the phase diagram of Li2O-Nb2O5 system.  相似文献   

17.
Using high resolution excitation-emission spectroscopy we investigated the changes occurring in the optical transition of Er3? ions in LiNbO3 during inversion of the ferroelectric axis. In stoichiometric LiNbO3 we find that a drastic reconfiguration among the different defect sites takes places favoring those centers which have already been dominant in the as-grown sample. The reconfiguration is attributed to changes in the arrangement of the local charge compensators. Furthermore, we find a small shift of the emission transition energy, which is consistent with an increase of the intrinsic electric field. These findings make the Er3? ions very suitable probes for 3D imaging of domain structures and for in-situ studies of the dynamics of the domain inversion processes and the defect/domain wall interaction.  相似文献   

18.
12CaO·7Al2O3 (C12A7) with a unique nano-porous structure and free O2? ions entrapped in sub-nanometer-sized cages is a fast oxygen-ion-conducting material. These free O2– may be replaced by various oxygen-related species, OH?, O2? and O?, by tuning the atmosphere during the heat treatment. We examined the conduction mechanism for stoichiometric C12A7 (C12A7:O2?), in which O2? ions exist as counter anions in sub-nanometer-sized cages, by Raman measurement of C12A7:O2? annealed in a dry 18O2 atmosphere. It was revealed that the primary ion conducting species is an O2? ion which diffuses via exchange with O2? in the cage wall. An experimental result on the sample containing O? ions implied that O? is more mobile than O2? in C12A7. Ab initio calculations on the diffusion paths of O2? and O? ions in C12A7 supported the above experimental results.  相似文献   

19.
Irradiation of lithium-niobate crystals (LiNbO3) with fast, high-energy 3He ions changes the refractive index in the interaction region where the ions speed through the material. Thus an inhomogeneous flux density profile can be used for a tailored modification of the optical properties of LiNbO3 crystals, without employing ion implantation. A new method to fabricate embedded, polarization sensitive channel waveguides in LiNbO3 utilizing accelerated 3He ions with an energy of 40 MeV is demonstrated. PACS 78.20; 42.82  相似文献   

20.
Doping MgO, MnO and Fe2O3 in LiNbO3 crystals, tri-doped Mg:Mn:Fe:LiNbO3 single crystals were prepared by the conventional Czochralski method. The UV-vis absorption spectra were measured and the shift mechanism of absorption edge was also investigated in this paper. In Mg:Mn:Fe:LiNbO3 crystal, Mn and Fe locate at the deep level and the shallow level, respectively. The two-photon holographic storage is realized in Mg:Mn:Fe:LiNbO3 crystals by using He-Ne laser as the light source and ultraviolet as the gating light. The results indicated that the recording time can be significantly reduced for introducing Mg2+ in the Mg:Mn:Fe:LiNbO3 crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号