首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过求解D2分子在飞秒激光场中的含时薛定谔方程,研究了室温下D2分子在超快1s秒激光驱动下的的转动波包动力学.选择用第一束超短飞秒脉冲与温度为300K的D2分子系综相互作用产生一个相干转动波包,用第二束超短匕秒脉冲在波包的1/4和3/4恢复周期选择操纵D2分子取向.研究结果表明,通过选择两束超短飞秒脉冲的延迟时间,可以有效控制D2分子转动波包中奇偶态的相对布居,从而选择性的控制D2分子取向.  相似文献   

2.
Optimal laser control for ultrafast selection of closely lying excited states whose energy separation is smaller than the laser bandwidth is reported on the two-photon transition of atomic cesium; Cs(6S-->7D(J), J=5/2 and 3/2). Selective excitation was carried out by pulse shaping of ultrashort laser pulses which were adaptively modulated in a closed-loop learning system handling eight parameters representing the electric field. Two-color fluorescence from the respective excited states was monitored to measure the selectivity. The fitness used in the learning algorithm was evaluated from the ratio of the fluorescence yields. After fifty generations, a pair of nearly transform-limited pulses were obtained as an optimal pulse shape, proving the effectiveness of the "Ramsey fringes" mechanism. The contrast of the selection ratio was improved by approximately 30% from the simple "Ramsey fringes" experiment.  相似文献   

3.
We present two novel optimization methods by employing shaped fs-laser pulses in a closed feedback loop. The first describes control pulse cleaning where extraneous features were removed by applying genetic pressure on certain pulse components. The second reports parametric optimization with intuitive parameters such as subpulse distances, chirps, phase differences, and spectral peak patterns. These methods were conducted on the ionization process of alkali dimers produced in a molecular beam and improved the performances of the optimized pulses compared with short pulses at the same pulse energy. Moreover, we attempt to analyze the obtained pulse shapes regarding the underlying optimized processes. Further investigations concerning isotope selective fragmentation and optimal control of excitation processes of ultracold rubidium dimers in a magneto-optical trap (MOT) are also shown.  相似文献   

4.
5.
Although ultrashort pulses are advantageous for multiphoton excitation microscopy, they can be difficult to manipulate and may cause increased sample damage when applied to biological tissue. Here we present a method based on coherent control that corrects phase distortions introduced by high numerical aperture (NA) microscope objectives, thereby achieving the full potential of ultrashort pulses. A number of useful phase functions are recommended to gain selectivity that is similar to that which can be achieved by tuning a longer laser pulse; however this one involves no moving parts and maintains perfect optimization. This capability is used to demonstrate functional imaging by selective two-photon excitation of a pH-sensitive chromophore. Finally, we show that phase functions can also be introduced to minimize multiphoton excitation damage, while maintaining a high efficiency of two-photon excitation.  相似文献   

6.
This article presents a new perspective on laser control based on insights into the effect of spectral phase on nonlinear optical processes. Gaining this understanding requires the systematic evaluation of the molecular response as a function of a series of pre-defined accurately shaped laser pulses. The effort required is rewarded with robust, highly reproducible, results. This approach is illustrated by results on selective two-photon excitation microscopy of biological samples, where higher signal and less photobleaching damage are achieved by accurate phase measurement and elimination of high-order phase distortions from the ultrashort laser pulses. A similar systematic approach applied to laser control of gas phase chemical reactions reveals surprising general trends. Molecular fragmentation pattern is found to be dependent on phase shaping. Differently shaped pulses with similar pulse duration have been found to produce similar fragmentation patterns. This implies that any single parameter that is proportional to the pulse duration, such as second harmonic generation intensity, allows us to predict the molecular fragmentation pattern within the experimental noise. This finding, is illustrated here for a series of isomers. Bond selectivity, coherent photochemistry and their applications are discussed in light of results from these systematic studies.  相似文献   

7.
Grignard reactants like methylmagnesium chloride are not selective with respect to different carbonyl bonds. We present a theoretical study where shaped laser pulses are utilized to prefer specific bonds in a mixture of more than one carbonyl reactant. A mixture of cyclohexanone and cyclopentanone has been chosen as a representative example. The light pulse is supposed to provide the activation energy and to adopt the function of a protecting group. The control aim is to stretch exclusively the C-O bond of one compound to the length required in the Grignard transition state. To guarantee an experimentally realizable bandwidth for the unshaped pulse, we use our recently developed optimal control theory algorithm, which allows the simultaneous optimization of the light field in the time and frequency domain. Highly selective picosecond control pulses could be optimized in the infrared regime suggesting that laser assisted chemoselectivity is possible to a large extent. To obtain control not only on the final product but also on the excitation mechanism, various initial conditions and frequency restrictions were investigated.  相似文献   

8.
Biomolecules very often present complex energy deactivation networks with overlapping electronic absorption bands, making their study a difficult task. This can be especially true in transient absorption spectroscopy when signals from bleach, excited state absorption and stimulated emission contribute to the signal. However, quantum control spectroscopy can be used to discriminate specific electronic states of interest by applying specifically designed laser pulses. Recently, we have shown the control of energy flow in bacterial light-harvesting using shaped pump pulses in the visible and the selective population of pathways in carotenoids using an additional depletion pulse in the transient absorption technique. Here, we apply a closed-loop optimization approach to β-carotene using a spatial light modulator to decipher the energy flow network after a multiphoton excitation with a shaped ultrashort pulse in the near-IR. After excitation, two overlapping bands were detected and identified as the S1 state and the first triplet state T1. Using the transient absorption signal at a specific probe delay as feedback, the triplet signal could be optimized over the singlet contribution.  相似文献   

9.
We have investigated the ring opening of 1,3-cyclohexadiene to form 1,3,5-cis-hexatriene (Z-HT) using optical pulse shaping to enhance multiphoton excitation. A closed-loop learning algorithm was used to search for an optimal spectral phase function, with the effectiveness or fitness of each optical pulse assessed using the UV absorption spectrum. The learning algorithm was able to identify pulses that increased the formation of Z-HT by as much as a factor of 2 and to identify pulse shapes that decreased solvent fragmentation while leaving the formation of Z-HT essentially unaffected. The highest yields of Z-HT did not occur for the highest peak intensity laser pulses. Rather, negative quadratic phase was identified as an important control parameter in the formation of Z-HT.  相似文献   

10.
Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.  相似文献   

11.
Two-dimensional electronic coherence spectroscopy (ECS) is an important method to study the coupling between distinct optical modes of a material system. Such studies often involve excitation using a sequence of phased ultrashort laser pulses. In conventional approaches, the delays between pulse temporal envelopes must be precisely monitored or maintained. Here, we introduce a new experimental scheme for phase-selective nonlinear ECS, which combines acousto-optic phase modulation with ultrashort laser excitation to produce intensity modulated nonlinear fluorescence signals. We isolate specific nonlinear signal contributions by synchronous detection, with respect to appropriately constructed references. Our method effectively decouples the relative temporal phases from the pulse envelopes of a collinear train of four sequential pulses. We thus achieve a robust and high signal-to-noise scheme for phase-selective ECS to investigate the resonant nonlinear optical response of photoluminescent systems. We demonstrate the validity of our method using a model quantum three-level system-atomic Rb vapor. Moreover, we show how our measurements determine the resonant complex-valued third-order susceptibility.  相似文献   

12.
We performed a series of successful experiments for the optimization of the population transfer from the ground to the first excited state in a complex solvated molecule (rhodamine 101 in methanol) using shaped excitation pulses at very low intensities (1 absorbed photon per 100-500 molecules per pulse). We found that the population transfer can be controlled and significantly enhanced by applying excitation laser pulses with crafted pulse shapes. The optimal shape was found in feedback-controlled experiments using a genetic search algorithm. The temporal profile of the optimal excitation pulse corresponds to a comb of subpulses regularly spaced by approximately 150 fs, whereas its spectrum consists of a series of well-resolved peaks spaced apart by approximately 6.5 nm corresponding to a frequency of 220 cm(-1). This frequency matches very well with the frequency modulation of the population kinetics (period of approximately 150 fs), observed by excitation with a short (approximately 20 fs) transform-limited laser pulse directly after excitation. In addition, an antioptimization experiment was performed under the same conditions. The difference in the population of the excited state for the optimal and antioptimal pulses reaches approximately 30% even at very weak excitation. The results of optimization are reproducible and have clear physical meaning.  相似文献   

13.
Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 degrees. Our method effectively decouples the relative temporal phase from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system--atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.  相似文献   

14.
We present a joint theoretical and experimental study of the maximization of the isotopomer ratio (23)Na(39)K(23)Na(41)K using tailored phase-only as well as amplitude and phase modulated femtosecond laser fields obtained in the framework of optimal control theory and closed loop learning (CLL) technique. A good agreement between theoretically and experimentally optimized pulse shapes is achieved which allows to assign the optimized processes directly to the pulse shapes obtained by the experimental isotopomer selective CLL approach. By analyzing the dynamics induced by the optimized pulses we show that the mechanism involving the dephasing of the wave packets between the isotopomers (23)Na (39)K and (23)Na (41)K on the first excited state is responsible for high isotope selective ionization. Amplitude and phase modulated pulses, moreover, allow to establish the connection between the spectral components of the pulse and corresponding occupied vibronic states. It will be also shown that the leading features of the theoretically shaped pulses are independent from the initial conditions. Since the underlying processes can be assigned to the individual features of the shaped pulses, we show that optimal control can be used as a tool for analysis.  相似文献   

15.
We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.  相似文献   

16.
Vibrational modes are excited by ultrashort tunable IR pulses and the time dependence of the excitation is measured by a second (visible) pulse. Spectra taken at a time delay of several picoseconds give evidence for the population lifetimes of CH-stretching modes of aromatic hydrogen, CH2 and CH3 vibrations. Relaxation times between 6 and 8 ps were found. Results are presented for two coumarins in different solvents.  相似文献   

17.
Symmetry breaking and control of bond selective dissociation can be achieved by means of ultrashort few-cycle-infrared (IR) and ultraviolet (UV) laser pulses. The mechanism is demonstrated for the oriented model system, FHF-, by nuclear wave packets which are propagated on two-dimensional potential energy surfaces calculated at the QCISD/d-aug-cc-pVTZ level of theory. The IR laser pulse is optimized to drive the wave packet coherently along alternate bonds. Next, a well-timed ultrashort UV laser pulse excites the wave packet, via photodetachment of the negative bihalide anion, to the bond selective domain of the neutral surface close to the transition state. The excited wave packet is then biased to evolve along the pre-excited bond toward the target product channel, rather than bifurcating in equal amounts. Comparison of the vibrational frequencies obtained within our model with harmonic and experimental frequencies indicates substantial anharmonicities and mode couplings which impose restrictions on the mechanism in the domain of ultrashort laser fields. Extended applications of the method to randomly oriented or to asymmetric systems XHY- are also discussed, implying the control of product directionality and competing bond-breaking.  相似文献   

18.
19.
We have shown that electromagnetically induced transparency can be achieved by control-probe interferometry using two delayed phase-locked ultrashort pulses. Two vibrational wavepackets on the excited state, excited by two delayed phase-locked ultrashort pulses, interfere constructively or destructively leading to enhancement or suppression of absorption to a selective set of vibrational levels. Depending on the phase difference and the delay between the pulses with same carrier frequency, one can design different transparency windows between absorption peaks at consecutive even(odd) vibrational levels by eliminating absorption at odd(even) vibrational levels. We have shown that by switching the phase difference of two delayed femtosecond pulses, one can switch to complete elimination of absorption from enhanced absorption to a particular set of vibrational levels in the excited state. Thus, switching of transparency through window between odd vibrational levels to that between even vibrational levels is possible. By properly choosing the temporal width and the carrier frequency of the pulses, lossless transmission of complete or bands of frequencies of the pulses can be achieved through these transparency windows. Hence, designing of single- or multi-mode transparency windows in NaH molecule is feasible by control-probe quantum interferometry.  相似文献   

20.
Closed loop automated pulse shaping experiments are conducted to investigate population transfer in solutions of the laser dye LDS750 in acetonitrile and ethanol. Guided by a genetic algorithm, the optical phases of broadband noncollinear parametric amplifier pulses are modulated by a micromachined deformable mirror to minimize sample fluorescence. The objectives were to test if nonlinearly chirped pulses could reduce population transfer below levels attained by their linearly chirped analogues, and if so, whether the resulting pulse shapes could be rationalized in terms of the photoinduced molecular dynamics. We further aimed to discover how the optimal solutions depend on the pulse fluence, and on the nature of the solvent. Using frequency resolved optical gating, the optimal field is shown to consist of a transform limited blue portion, which promotes population to the excited state, and a negatively chirped red tail, which follows the Stokes shifting of the excited density and dumps it back down to the ground state through stimulated emission. This is verified by comparing the optimal group delay dispersion with multichannel transient absorption data collected in acetonitrile. The optimal pulse shape was not significantly affected by variation of pulse fluence or by the change of solvent for the two polar liquids investigated. These results are discussed in terms of accumulated insights concerning the photophysics of LDS750 and the capabilities of our learning feedback scheme for quantum control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号