首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with R'OH (R' = Me, Et, n-Pr, i-Pr, n-Bu) at 45 degrees C in all cases allowed the isolation of the trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] imino ester complexes, while the reaction between cis-[PtCl(4)(RCN)(2)] and the least sterically hindered alcohols (methanol and ethanol) results in the formation of cis-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R/R' = Me/Me) or trans-[PtCl(4)[(E)-NH=C(Et)OR'](2)] (R' = Me, Et), the latter being formed via thermal isomerization (ROH, reflux, 3 h) of the initially formed corresponding cis isomers. The reaction between alcohols R'OH and cis-[PtCl(4)(RCN)(2)] (R = Me, R' = Et, n-Pr, i-Pr, n-Bu; R = Et; R' = n-Pr, i-Pr, n-Bu), exhibiting greater R/R' steric congestion, allowed the isolation of cis-[PtCl(4)[(E)-NH=C(R)OR'][(Z)-NH=C(R)OR']] as the major products. The alcoholysis reactions of poorly soluble [PtCl(4)(RCN)(2)] (R = CH(2)Ph, Ph) performed under heterogeneous conditions, directly in the appropriate alcohol and for a prolonged time and, for R = Ph, with heating led to trans-[PtCl(4)[(E)-NH=C(R)OR'](2)] (R = CH(2)Ph, R' = Me, Et, n-Pr, i-Pr; R = Ph, R' = Me) isolated in moderate yields. In all of the cases, in contrast to platinum(II) systems, addition of R'OH to the organonitrile platinum(IV) complexes occurs under mild conditions and does not require a base as a catalyst. The formed isomerically pure (imino ester)Pt(IV) complexes can be reduced selectively, by Ph(3)P=CHCO(2)Me, to the corresponding isomers of (imino ester)Pt(II) species, exhibiting antitumor activity, without change in configuration of the imino ester ligands. Furthemore, the imino esters NH=C(R)OR' can be liberated from both platinum(IV) and platinum(II) complexes [PtCl(n)[H=C(R)OR'](2)] (n = 2, 4) by reaction with 1,2-bis(diphenylphosphino)ethane and pyridine, respectively. All of the prepared compounds were characterized by elemental analyses (C, H, N), FAB mass spectrometry, IR, and (1)H, (13)C[(1)H], and (195)Pt (metal complexes) NMR spectroscopies; the E and Z configurations of the imino ester ligands in solution were determined by observation of the nuclear Overhauser effect. X-ray structure determinations were performed for trans-[PtCl(4)[(E)-NH=C(Me)OEt](2)] (2), trans-[PtCl(4)[(E)-NH=C(Et)OEt](2)] (10), trans-[PtCl(4)[(E)-NH=C(Et)OPr-i](2)] (11), trans-[PtCl(4)[(E)-NH=C(Et)OPr-n](2)] (12), and cis-[PtCl(4)[(E)-NH=C(Et)OMe](2)] (14). Ab initio calculations have shown that the EE isomers are the most stable ones for both platinum(II) and platinum(IV) complexes, whereas the most stable configurations for the ZZ isomers are less stable than the respective EZ isomers, indicating an increase of the stability on moving from the ZZ to the EE configurations which is more pronounced for the Pt(IV) complexes than for the Pt(II) species.  相似文献   

2.
The Hg2+aq- and HgCl+aq-assisted aquations of [PtCl4]2- (1), [PtCl3(H2O)]- (2), cis-[PtCl2(H2O)2] (3), trans-[PtCl2(H2O)2] (4), [PtCl(H2O)3]+ (5), [PtCl3Me2SO]- (6), trans-[PtCl2(H2O)Me2SO] (7), cis-[PtCl(H2O)2Me2SO]+ (8), trans-[PtCl(H2O)2M32SO]+ (9), trans-[PtCl2(NH3)2] (10), and cis-[PtCl2(NH3)2] (11) have been studied at 25.0 degrees C in a 1.00 M HClO4 medium buffered with chloride, using stopped-flow and conventional spectrophotometry. Saturation kinetics and instantaneous, large UV/vis spectral changes on mixing solutions of platinum complex and mercury are ascribed to formation of transient adducts between Hg2+ and several of the platinum complexes. Depending on the limiting rate constants, these adducts are observed for a few milliseconds to a few minutes. Thermodynamic and kinetics data together with the UV/vis spectral changes and DFT calculations indicate that their structures are characterized by axial coordination of Hg to Pt with remarkably short metal-metal bonds. Stability constants for the Hg2+ adducts with complexes 1-6, 10, and 11 are (2.1 +/- 0.4) x 10(4), (8 +/- 1) x 10(2), 94 +/- 6, 13 +/- 2, 5 +/- 2, 60 +/- 6, 387 +/- 2, and 190 +/- 3 M-1, respectively, whereas adduct formation with the sulfoxide complexes 7-9 is too weak to be observed. For analogous platinum(II) complexes, the stabilities of the Pt-Hg adducts increase in the order sulfoxide < aqua < ammine complex, reflecting a sensitivity to the pi-acid strength of the Pt ligands. Rate constants for chloride transfer from HgCl+ and HgCl2 to complexes 1-11 have been determined. Second-order rate constants for activation by Hg2+ are practically the same as those for activation by HgCl+ for each of the platinum complexes studied, yet resolved contributions for Hg2+ and HgCl+ reveal that the latter does not form dinuclear adducts of any significant stability. The overall experimental evidence is consistent with a mechanism in which the accumulated Pt(II)-Hg2+ adducts are not reactive intermediates along the reaction coordinate. The aquation process occurs via weaker Pt-Cl-Hg or Pt-Cl-HgCl bridged complexes.  相似文献   

3.
Treatment of trans-[PtCl(4)(RCN)(2)] (R = Me, Et) with ethanol allowed the isolation of trans-[PtCl(4)[E-NH[double bond]C(R)OEt](2)]. The latter were reduced selectively, by the ylide Ph(3)P[double bond]CHCO(2)Me, to trans-[PtCl(2)[E-NH[double bond]C(R)OEt](2)]. The complexed imino esters NH[double bond]C(R)OEt were liberated from the platinum(II) complexes by reaction with 2 equiv of 1,2-bis(diphenylphosphino)ethane (dppe) in chloroform; the cationic complex [Pt(dppe)(2)]Cl(2) precipitates almost quantitatively from the reaction mixture and can be easily separated by filtration to give a solution of NH[double bond]C(R)OEt with a known concentration of the imino ester. The imino esters efficiently couple with the coordinated nitriles in trans-[PtCl(4)(EtCN)(2)] to give, as the dominant product, [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] containing a previously unknown linkage, i.e., ligated N-(1-imino-propyl)-alkylimidic acid ethyl esters. In addition to [PtCl(4)[NH[double bond]C(Et)N[double bond]C(Et)OEt](2)], another compound was generated as the minor product, i.e., [PtCl(4)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], which was reduced to [PtCl(2)(EtCN)[NH[double bond]C(Et)N[double bond]C(Et)OEt]], and this complex was characterized by X-ray single-crystal diffraction. The platinum(IV) complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] are unstable toward hydrolysis and give EtOH and the acylamidine complexes trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)], where the coordination to the Pt center results in the predominant stabilization of the imino tautomer NH[double bond]C(Et)NHC(R)[double bond]O over the other form, i.e., NH(2)C(Et)[double bond]NC(R)[double bond]O, which is the major one for free acylamidines. The structures of trans-[PtCl(4)[Z-NH[double bond]C(Et)NHC(R)[double bond]O](2)] (R = Me, Et) were determined by X-ray studies. The complexes [PtCl(4)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)] were reduced to the appropriate platinum(II) compounds [PtCl(2)[NH[double bond]C(Et)N[double bond]C(R)OEt](2)], which, similarly to the appropriate Pt(IV) compounds, rapidly hydrolyze to yield the acylamidine complexes [PtCl(2)[NH[double bond]C(Et)NHC(R)[double bond]O](2)] and EtOH. The latter acylamidine compounds were also prepared by an alternative route upon reduction of the corresponding platinum(IV) complexes. Besides the first observation of the platinum(IV)-mediated nitrile-imine ester integration, this work demonstrates that the application of metal complexes gives new opportunities for the generation of a great variety of imines (sometimes unreachable in pure organic chemistry) in metal-mediated conversions of organonitriles, the "storage" of imino species in the complexed form, and their synthetic utilization after liberation.  相似文献   

4.
The platinum(II) complexes trans-[PtCl(2)(RR'C=NOH)(2)], where R = R' = Me, RR' = (CH(2))(4) and (CH(2))(5), react with m-chloroperoxybenzoic acid in Me(2)CO to give the platinum(IV) complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] in 50-60% yields. The complexes [PtCl(2)(OCMe(2)ON=CRR')(2)] were characterized by elemental analysis, EI-MS, and IR and Raman spectroscopies; X-ray structure analyses were performed for both trans-[PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and trans-[PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)]. The former compound crystallizes in the triclinic space group P&onemacr; with a = 8.088(2) ?, b = 8.327(2) ?, c = 8.475(2) ?, alpha = 103.54(3) degrees, beta = 102.15(3) degrees, gamma = 108.37(3) degrees, V = 501.0(2) ?(3), Z = 1, and rho(calcd) = 1.917 g cm(-)(3). The latter complex crystallizes in the monoclinic space group C2/c with a = 12.5260(10) ?, b = 9.3360(10) ?, c = 18.699(2) ?, beta = 98.320(10) degrees, V = 2163.7(4) ?(3), Z = 4, and rho(calcd) = 1.862 g cm(-)(3). The structures of [PtCl(2)(OCMe(2)ON=CC(4)H(8))(2)] and [PtCl(2)(OCMe(2)ON=CC(5)H(10))(2)] show an octahedron of Pt where two Cl atoms and two chelate ligands are mutually trans, respectively.  相似文献   

5.
Trans complexes such as trans-[PtCl(2)(NH(3))(2)] have historically been considered therapeutically inactive. The use of planar ligands such as pyridine greatly enhances the cytotoxicity of the trans geometry. The complexes trans-[PtCl(R'R'SO)(A)(2)]NO(3) (R'R'SO = substituted sulfoxides such as dimethyl (Me(2)SO), methyl benzyl (MeBzSO), and methyl phenyl sulfoxide (MePhSO) and A = NH(3), pyridine (py) and 4-methylpyridine or picoline (pic)) were prepared for comparison of the chemical reactivity between ammine and pyridine ligands. The X-ray crystal structure determination for trans-[PtCl(Me(2)SO)(py)(2)]NO(3) confirmed the geometry with S-bound Me(2)SO. The crystals are orthorhombic, space group P2(1)2(1)2(1), with cell dimensions a = 7.888(2) A, b = 14.740(3) A, c =15.626(5) A, and Z = 4. The geometry around the platinum atom is square planar with l(Pt-Cl) = 2.304(4) A, l(Pt-S) = 2.218(5) A, and l(Pt-N) = 2.03(1) and 2.02(1) A. Bond angles are normal with Cl-Pt-S = 177.9(2) degrees, Cl-Pt-N(1) = 88.0(4) degrees, Cl-Pt-N(2) = 89.3(5) degrees, S-Pt-N(1) = 93.8(4) degrees, S-Pt-N(2) = 88.9(4) degrees, and N(1)-Pt-N(2) = 177.2(6) degrees. The intensity data were collected with Mo Kalpha radiation with lambda = 0.710 69 A. Refinement was by full-matrix least-squares methods to a final R value of 3.80%. Unlike trans-[PtCl(2)(NH(3))(2)], trans-[PtCl(2)(A)(2)] (A = py or pic) complexes do not react with Me(2)SO. The solvolytic products of cis-[PtCl(2)(A)(2)] (A = py or pic) were characterized. Studies of displacement of the sulfoxide by chloride were performed using HPLC. The sulfoxide was displaced faster for the pyridine complex relative to the ammine complex. Chemical studies comparing the reactivity of trans-[PtCl(R'R'SO)(amine)(2)]NO(3) with a model nucleotide, guanosine 5'-monophosphate (GMP), showed that the reaction gave two principal products: the species [Pt(R'R'SO)(amine)(2)(N7-GMP)], which reacts with a second equivalent of GMP, forming [Pt(amine)(2)(N7-GMP)(2)]. The reaction pathways were different, however, for the pyridine complexes in comparison to the NH(3) species, with sulfoxide displacement again being significantly faster for the pyridine case.  相似文献   

6.
This paper reports on the chemistry of platinum complexes containing bidentate pyridine-carboxylate (pyAc = pyridin-2-yl-acetate and picEt = pyridine-2-ethylcarboxylate, ethylpicolinate) (N,O) ligands. The pyridine-2-acetate and ethylpicolinate ligands form six- and five-membered chelates, respectively, upon formation of the Pt-carboxylate bond. In all reactions with picEt with various platinum complex starting materials, spontaneous de-esterification of the pendant carboxylate ester occurs to give directly the chelates K[PtCl(2)(pic-N,O)]-trans-[Pt(pic-N,O)(2)] and SP-4,2-[PtCl(pic-N,O)(NH(3))] without any evidence of intermediates. The de-esterification is solvent dependent, and molecular modeling was used to explain this reaction. The reactions of the geometric isomers of [PtCl(pyAc-N,O)(NH(3))] with 5'-guanosine monophosphate, 5'-GMP, and N-acetyl-l-methionine, AcMet, were investigated by NMR spectroscopy. The objective was to ascertain by model chemistry the feasibility of formation of ternary DNA-Pt-protein adducts in biology. Model nucleotide and peptide compounds were formed in situ by chloride displacement giving [PtL(pyAc-N,O)(NH(3))](+) (L = 5'-GMP or AcMet). Competitive reactions were then examined by addition of the complementary ligand L. Sulfur displacement of coordinated 5'-GMP was slow. For SP-4,3-[Pt(AcMet)(NH(3))(PyAc-N,O)](+), a rapid displacement of the sulfur ligand by 5'-GMP was observed, giving SP-4,2-[Pt(5'-GMP-N7)(pyAc-N,O)(NH(3))](+).  相似文献   

7.
The physical and biological properties have been determined for three Pt(IV) complexes with trans amine ligands: trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(isopropylamine)] (1(IV)), trans,trans,trans-[PtCl(2)(OH)(2)(dimethylamine)(methylamine)] (2(IV)) and trans,trans,trans-[PtCl(2)(OH)(2)(isopropylamine)(methylamine)] (3(IV)). The crystal structures of 2(IV) and 3(IV) reveal substantial strain resulting from repulsion between the amine ligands and the chlorido and hydroxido ligands. All three complexes have reduction potentials in the range -666 to -770 mV, values usually associated with high resistance to reduction and low cytotoxicity. However, the complexes all demonstrate surprisingly high cytotoxicity with values and trends that closely follow those seen for the Pt(II) congeners of these complexes. These results are consistent with more rapid reduction of the Pt(IV) complexes than would be expected based on the reduction potentials, perhaps associated with the trans arrangement of the chlorido ligands.  相似文献   

8.
The hexaphosphapentaprismane P(6)C(4)(t)Bu(4) undergoes specific insertion of the zerovalent platinum fragment [Pt(PPh(3))(2)] into the unique P-P bond between the 5-membered rings to afford [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)]. A similar reaction with the Pt(ii) complexes [{PtCl(2)(PMe(3))}(2)] and [PtCl(2)(eta(4)-COD)] results in both insertion and chlorine migration reactions. The complexes [Pt(PPh(3))(2)P(6)C(4)(t)Bu(4)], trans-[PtCl(PMe(3))P(6)C(4)(t)Bu(4)Cl], cis-,trans-[{PtCl(2)(PMe(3))}micro-{P(6)C(4)(t)Bu(4)}{PtCl(2)(PMe(3))}], [{PtClP(6)C(4)(t)Bu(4)Cl}(2)] and cis-[PtClP(6)C(4)(t)Bu(4)Cl(P(6)C(4)(t)Bu(4))] have been structurally characterized by single crystal X-ray diffraction and multinuclear NMR studies.  相似文献   

9.
Addition of excess R(2)NCN to an aqueous solution of K(2)[PtCl(4)] led to the precipitation of [PtCl(2)(NCNR(2))(2)] (R(2) = Me(2) 1; Et(2) 2; C(5)H(10) 3; C(4)H(8)O, 4) in a cis/trans isomeric ratio which depends on temperature. Pure isomers cis-1-3 and trans-1-3 were separated by column chromatography on SiO(2), while trans-4 was obtained by recrystallization. Complexes cis-1-3 isomerize to trans-1-3 on heating in the solid phase at 110 degrees C; trans-1 has been characterized by X-ray crystallography. Chlorination of the platinum(II) complexes cis-1-3 and trans-1-4 gives the appropriate platinum(IV) complexes [PtCl(4)(NCNR(2))(2)] (cis-5-7 and trans-5-8). The compound cis-6 was also obtained by treatment of [PtCl(4)(NCMe)(2)] with neat Et(2)NCN. The platinum(IV) complex trans-[PtCl(4)(NCNMe(2))(2)] (trans-5) in a mixture of undried Et(2)O and CH(2)Cl(2) undergoes facile hydrolysis to give trans-[PtCl(4)[(H)=C(NMe(2))OH](2)] (9; X-ray structure has been determined). The hydrolysis went to another direction with the cis-[PtCl(4)(NCNR(2))(2)] (cis-5-7) which were converted to the metallacycles [PtCl(4)[NH=C(NR(2))OC(NR(2))=NH]] (11-13) due to the unprecedented hydrolytic coupling of the two adjacent dialkylcyanamide ligands giving a novel (for both coordination and organic chemistry) diimino linkage. Compounds 11-13 and also 14 (R(2) = C(4)H(8)O) were alternatively obtained by the reaction between cis-[PtCl(4)(MeCN)(2)] and neat undried NCNR(2). The structures of complexes 11, 13, and 14 were determined by X-ray single-crystal diffraction. All the platinum compounds were additionally characterized by elemental analyses, FAB mass-spectrometry, and IR and (1)H and (13)C[(1)H] NMR spectroscopies.  相似文献   

10.
2-(Arylazo)pyridine ligands, L1a-1c react with the salt K2[PtCl4] to give the mononuclear complexes [PtCl2(L1)](1), which readily react with ArNH2 to yield the monochloro complexes of type [PtCl(L2)](HL2= 2-[(2-(arylamino)phenyl)azo]pyridine)(2) via regioselective ortho-amine fusion at the pendent aryl ring of coordinated L1. Oxidative addition of the electrophiles Y2(Y = Cl, Br, I) to the square-planar platinum(II) complex, has led to syntheses of the corresponding octahedral platinum(IV) complexes, [PtY3(L2)](3) in high yields. Ascorbate ion reductions of the platinum(IV) complexes, , resulted in reductive halogen elimination to revert to the platinum(II) complexes almost quantitatively. Isolation of products and X-ray structure determination of the representative complexes followed all these chemical reactions. In crystal packing, the compound [PtCl2(L1c)](1c) forms dimeric units with a Pt...Pt distance of 3.699(1) A. In contrast, the crystal packing of 2b revealed that the molecules are arranged in an antiparallel fashion to form a noncovalent 1D chain to accommodate pi(aryl)-pi(pyridyl) and Pt-pi(aryl) interactions. Notably, the oxidation of [Pt(II)Cl(L2a)](2a) by I2 produced a mixed halide complex [Pt(IV)ClI2(L2a)](5), which, in turn, is reduced by ascorbate ion to produce [Pt(II)I(L2a)] with the elimination of ClI. All the platinum(II) complexes are brown, the platinum(IV) complexes, on the other hand, are green. Low-energy visible range transitions in the complexes of the extended ligand [L2]- are ascribed to ligand basedpi-pi* transitions. Cyclic voltammetric behaviour of the complexes is reported.  相似文献   

11.
The metal-mediated coupling between coordinated EtCN in the platinum(II) and platinum(IV) complexes cis- and trans-[PtCl(2)(EtCN)(2)], trans-[PtCl(4)(EtCN)(2)], a mixture of cis/trans-[PtCl(4)(EtCN)(2)] or [Ph(3)PCH(2)Ph][PtCl(n)(EtCN)] (n = 3, 5), and dialkyl- and dibenzylhydroxylamines R(2)NOH (R = Me, Et, CH(2)Ph, CH(2)C(6)H(4)Cl-p) proceeds smoothly in CH(2)Cl(2) at 20-25 degrees C and the subsequent workup allowed the isolation of new imino species [PtCl(n){NH=C(Et)ONR(2)}(2)] (n = 2, R = Me, cis-1 and trans-1; Et, cis-2 and trans-2; CH(2)Ph, cis-3 and trans-3; CH(2)C(6)H(4)Cl-p, cis-4 and trans-4; n = 4, R = Me, trans-9; Et, trans-10; CH(2)Ph, trans-11; CH(2)C(6)H(4)Cl-p, trans-12) or [Ph(3)PCH(2)Ph][PtCl(n){NH=C(Et)ONR(2)}] (n = 3, R = Me, 5; Et, 6; CH(2)Ph, 7; CH(2)C(6)H(4)Cl-p, 8; n = 5, R = Me, 13; Et, 14; CH(2)Ph, 15; CH(2)C(6)H(4)Cl-p, 16) in excellent to good (95-80%) isolated yields. The reduction of the Pt(IV) complexes 9-16 with the ylide Ph(3)P=CHCO(2)Me allows the synthesis of Pt(II) species 1-8. The compounds 1-16 were characterized by elemental analyses (C, H, N), FAB-MS, IR, (1)H, (13)C{(1)H}, and (31)P{(1)H} NMR (the latter for the anionic type complexes 5-8 and 13-16) and by X-ray crystallography for the Pt(II) (cis-1, cis-2, and trans-4) and Pt(IV) (15) species. Kinetic studies of addition of R(2)NOH (R = CH(2)C(6)H(4)Cl-p) to complexes [Ph(3)PCH(2)Ph][Pt(II)Cl(3)(EtCN)] and [Ph(3)PCH(2)Ph][Pt(IV)Cl(5)(EtCN)] by the (1)H NMR technique revealed that both reactions are first order in (p-ClC(6)H(4)CH(2))(2)NOH and Pt(II) or Pt(IV) complex, the second-order rate constant k(2) being three orders of magnitude larger for the Pt(IV) complex. The reactions are intermolecular in nature as proved by the independence of k(2) on the concentrations of added EtC triple bond N and Cl(-). These data and the calculated values of Delta H++ and Delta S++ are consistent with the mechanism involving the rate-limiting nucleophilic attack of the oxygen of (p-ClC(6)H(4)CH(2))(2)NOH at the sp-carbon of the C triple bond N bond followed by a fast proton migration.  相似文献   

12.
CHEN  Jun-Hui ZHOU  Li-Xin 《结构化学》2010,29(10):1536-1546
The monofunctional substitution reactions between trans-[PtCl(H2O)(NH3)(pip)]+,trans-[Pt(H2O)2(NH3)(pip)]2+,trans-[PtCl(H2O)(pip)2]+,trans-[Pt(H2O)2(pip)2]2+ (pip = piperidine) and adenine/guanine nucleotides are explored by using B3LYP hybrid functional and IEF-PCM salvation models. For the trans-[Pt(H2O)2(NH3)(pip)]2+ and trans-[PtCl(H2O)(NH3)(pip)]+ complexes,the computed barrier heights in aqueous solution are 13.5/13.5 and 11.6/11.6 kcal/mol from trans-Pt-chloroaqua complex to trans/cis-monoadduct for adenine and guanine,and the corresponding values are 20.7/20.7 and 18.8/18.8 kcal/mol from trans-Pt-diaqua complex to trans/cis-monoadduct for adenine and guanine,respectively. For trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+,the corresponding values are 21.5/21.3 and 19.4/19.4 kcal/mol,and 26.0/26.0 and 20.7/20.8 kal/mol for adenine and guanine,respectively. Our calculations demonstrate that the barrier heights of chloroaqua are lower than the corresponding values of diaqua for adenine and guanine. In addition,the free energies of activation for guanine in aqueous solution are all smaller than that for adenine,which predicts a preference of 1.9 kcal/mol when trans-[PtCl(H2O)(NH3)(pip)]+ and trans-[Pt(H2O)2(NH3)(pip)]2+ are the active agents and ~1.9 and ~ 5.3 kcal/mol when trans-[PtCl(H2O)(pip)2]+ and trans-[Pt(H2O)2(pip)2]2+ are the active agents,respectively. For the reaction of trans-Pt-chloroaqua (or diaqua) to cis-monoadduct,we obtain the same transition-state structure as from the reaction of trans-Pt-chloroaqua (or diaqua) to trans-monoadduct,which seems that the trans-Pt-chloroaqua (or diaqua) complex can generate trans-or cis-monoadduct via the same transition-state.  相似文献   

13.
Complexes [Pt(mu-N,S-8-TT)(PPh(3))(2)](2) (1), [Pt(mu-S,N-8-TT)(PTA)(2)](2) (2), [Pt(8-TTH)(terpy)]BF(4) (3), cis-[PtCl(8-MTT)(PPh(3))(2)] (4), cis-[Pt(8-MTT)(2)(PPh(3))(2)] (5), cis-[Pt(8-MTT)(8-TTH)(PPh(3))(2)] (6), cis-[PtCl(8-MTT)(PTA)(2)] (7), cis-[Pt(8-MTT)(2)(PTA)(2)] (8), and trans-[Pt(8-MTT)(2)(py)(2)] (9) (8-TTH(2) = 8-thiotheophylline; 8-MTTH = 8-(methylthio)theophylline; PTA = 1,3,5-triaza-7-phosphaadamantane) are presented and studied by IR and multinuclear ((1)H, (31)P[(1)H]) NMR spectroscopy. The solid-state structure of 4 and 9 has been authenticated by X-ray crystallography. Growth inhibition of the cancer cells T2 and SKOV3 induced by the above new thiopurine platinum complexes has been investigated. The activity shown by complexes 4 and 9 was comparable with cisplatin on T2. Remarkably, 4 and 9 displayed also a valuable activity on cisplatin-resistant SKOV3 cancer cells.  相似文献   

14.
Iminoacylation of acetone oxime Me(2)C[double bond, length as m-dash]NOH upon reaction with trans-[PtCl(2)(NCCH(2)CO(2)Me)(2)] and [2 + 3] cycloaddition of acyclic nitrone (-)O(+)N(Me) = C(H)(C(6)H(4)Me-4) to a nitrile ligand in lead to the formation of mono-imine trans-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] [imine-a = NH[double bond, length as m-dash]C(CH(2)CO(2)Me)ON = CMe(2)] and mono-oxadiazoline trans-[PtCl(2)(oxadiazoline-a)(NCCH(2)CO(2)Me)] [oxadiazoline-a = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)ON(Me)C[upper bond 1 end](H)(C(6)H(4)Me-4)] unsymmetric mixed ligand complexes, respectively, as the main products. Reactions of or with acetone oxime , cyclic nitrone (-)O(+)N = CHCH(2)CH(2)C[upper bond 1 end]Me(2) or N,N-diethylhydroxylamine give access, in moderate to good yields, to the unsymmetric mixed ligand oxadiazoline and/or imine complexes trans-[PtCl(2)(oxadiazoline-a)(imine-a)] , trans-[PtCl(2)(oxadiazoline-a)(oxadiazoline-b)] [oxadiazoline-b = [upper bond 1 start]N[double bond, length as m-dash]C(CH(2)CO(2)Me)O[lower bond 1 start]NC[upper bond 1 end](H)CH(2)CH(2)C[lower bond 1 end]Me(2)], trans-[PtCl(2)(imine-a)(imine-b)] [imine-b = NH = C(CH(2)CO(2)Me)ONEt(2)] or trans-[PtCl(2)(imine-a)(oxadiazoline-b)] . The cis mono-imine mixed ligand complex cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] is the major product from the reaction of cis-[PtCl(2)(NCCH(2)CO(2)Me)(2)] with the oxime , while the di-imine compound cis-[PtCl(2)(imine-a)(2)] is a minor product. Reaction of cis-[PtCl(2)(imine-a)(NCCH(2)CO(2)Me)] with N,N-diethylhydroxylamine or the cyclic nitrone affords, in good yields, the unsymmetric mixed ligand complexes cis-[PtCl(2)(imine-a)(imine-b)] or cis-[PtCl(2)(imine-a)(oxadiazoline-b)] , respectively. All these complexes were characterized by elemental analyses, IR and (1)H, (13)C and (195)Pt NMR spectroscopies, and FAB(+)-MS. The X-ray structural analysis of trans-[PtCl(2){NH=C(CH(2)CO(2)Me)ON=CMe(2)}(NCCH(2)CO(2)Me)] is also reported.  相似文献   

15.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

16.
Treatment of the bridging bidentate 1,Z-bis(aminopropyl)-1,Z-dicarba-closo-dodecaborane(12)(1,Z-bis(aminopropyl)-1,Z-carborane) ligands of the type 1,Z-[H(2)N(CH(2))(3)](2)-1,Z-C(2)B(10)H(10)(L(1), Z= 7, 5) or (L(2), Z= 12, 6) with two equivalents of trans-[PtClI(2)(NH(3))](-), followed by halogen ligand metathesis with AgOTf and HCl((aq)) afforded the novel diplatinum(II)-amine species cis-[[PtCl(2)(NH(3))](2)L(n)](7(n= 1) or 8(n= 2), respectively). Similarly, the reaction of L(1) or L(2) with the labile trans-[PtCl(dmf)(NH(3))(2)](+) afforded trans-[[PtCl(NH(3))(2)](2)L(n)](OTf)(2)(9(n= 1) or 10(n= 2), respectively) in good yield and purity. However, isolation of the analogous 1,2-carborane complexes was not possible owing to decomposition reactions that led to extensive degradation of the carborane cage and reduction of the metal centre. The mixed dinuclear complex [cis-[PtCl(2)(NH(3))]-L(1)-trans-[PtCl(NH(3))(2)]]OTf (19) was prepared by treatment of the Boc-protected amine ligand 1-[(Boc)(2)N(CH(2))(3)]-7-[H(2)N(CH(2))(3)]-1,7-C(2)B(10)H(10)(L(3), 15) with trans-[PtCl(dmf)(NH(3))(2)](+) to yield trans-[PtCl(NH(3))(2)L(3)]OTf (16), followed by acid deprotection of the pendant amine group, complexation with trans-[PtClI(2)(NH(3))](-), and halogen ligand metathesis using AgOTf and HCl((aq)). A novel trinuclear species containing 5 was prepared by the addition of two equivalents of 15 to the labile precursor cis-[Pt(dmf)(2)(NH(3))(2)](2+) followed by acid deprotection of the pendant amine groups. Further complexation with two equivalents of trans-[PtClI(2)(NH(3))](-) followed by halogen ligand metathesis using AgOTf and HCl((aq)) afforded the triplatinum(II)-amine species [cis-[Pt(NH(3))(2)(L(1))(2)]-cis-[PtCl(2)(NH(3))](2)](OTf)(2)(23). Complexes 7-10, 19 and 23 represent the first examples of multinuclear platinum(ii)-amine derivatives containing carborane cages. Preliminary in vitro cytotoxicity studies for selected complexes are also reported.  相似文献   

17.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

18.
The hydrolysis process of the anticancer agents novel non-classical trans- platinum(Ⅱ ) with aliphatic amines and the influence of solvent models therein have been studied by using hybrid density functional theory (B3LYP). In this study, the stepwise hydrolysis, trans- [PtCl2(Am)(isopropylamine)] + 2H2O → trans-[Pt(Am)(isopropylamine)(OH2)2]2+ + 2Cl-, was explored. Implicit solvent effects were incorporated through polarized continuum models. The stationary points on the potential energy surfaces for the first and second hydrolysis steps, proceeding via a general SN2 pathway, were fully optimized and characterized. It was found that the first hydrolysis reaction is easier than the second one and the hydrolysis of trans-[PtCl2- (isopropylamine)2] is the easiest in our studying systems. The result can assist in under-tanding the hydrolysis mechanism of trans-[PtCl2(Am)(isopropylamine)] and designing novel Pt-based anticancer drugs.  相似文献   

19.
A significant activation of the Ctbd1;N group in organonitriles upon their coordination to a platinum(IV) center has been found in the reaction of [PtCl(4)(RCN)(2)] (R = Me, Et, CH(2)Ph) with the nitrile oxides 2,4,6-R'(3)C(6)H(2)CNO (R' = Me, OMe) to give the (1,2,4-oxadiazole)platinum(IV) complexes (R = Me, R' = Me (1); R = Et, R' = Me (2); R = Et, R' = OMe (3); R = CH(2)Ph, R' = Me (4)); the [2 + 3] cycloaddition was performed under mild conditions (unless poor solubility of [PtCl(4)(RCN)(2)] precludes the reaction) starting even from complexed acetonitrile and propionitrile, which exhibit low reactivity in the free state. The reaction between complexes 2-4 and 1 equiv of Ph(3)P=CHCO(2)Me in CH(2)Cl(2) leads to the appropriate platinum(II) complexes (5-7); the reduction failed only in the case of 1 insofar as this complex is insoluble in the most common organic solvents. All the platinum compounds were characterized by elemental analyses, FAB mass spectrometry, and IR and (1)H, (13)C((1)H), and (195)Pt NMR spectroscopies, and three of them also by X-ray crystallography. The oxadiazoles formed in the course of the metal-mediated reaction were liberated almost quantitatively from their Pt(IV) complexes by reaction of the latter (complexes 2-4) with an excess of pyridine in chloroform, giving free 1,2,4-oxadiazoles and trans-[PtCl(4)(pyridine)(2)]; the sequence of the Pt(IV)-mediated [2 + 3] cycloaddition and the liberation opens up an alternative route for the preparation of this important class of heterocycles.  相似文献   

20.
Platinum complexes with Z configuration iminoether ligands (trans-[PtCl(2)(HN=C(OMe)Bu(t))(2)], 1, and trans-[PtCl(4)(HN=C(OMe)Bu(t))(2)], 2) have been structurally characterized for the first time. The nearly planar Pt-N-C-O-C chain, all atoms being in gauche conformation, brings the terminal Pt and C atoms very close to one another. The steric clash is released by considerably increasing the Pt-N-C, N-C-O, and C-O-C bond angles (133, 124, and 121 degrees for 1, respectively; 147, 129, and 127 degrees for 2, respectively), which are well above the expected values (120 degrees for Pt-N-C and N-C-O; less than 120 degrees for C-O-C owing to the repulsive effect exerted by the lone pair of electrons on the oxygen atom). In the platinum(II) case the smaller increase of bond angles is accompanied by a greater value of the Pt-N-C-O torsion angle (27.3 and 15.6 degrees for 1 and 2, respectively). The stabilization of the Z configuration, notwithstanding the steric clashes described above, has been achieved by a careful choice of the R substituent in the iminoether moiety (a bulky tert-butyl group). The reactions of the platinum(IV) species (2) in basic and acidic conditions and with triphenylphosphine have been investigated. Bases and acids both interact with the coordinated ligand in such a way to weaken the coordinative bond and promote the release of the iminoether ligands. The phosphine promotes a ready and complete reduction of the platinum(IV) complex to the corresponding platinum(II) species (1). Compound 1 reacts with a stoichiometric amount of phosphine (1:1 molar ratio) to form cis-[PtCl(2)(PPh(3))(Z-HN=C(OMe)Bu(t))] and with excess phosphine to form [PtCl(2)(PPh(3))(2)] and free iminoether. The latter two reactions leading to formation of a mixed phosphine/iminoether platinum species and to free iminoether, which can be used as a synthon for further organic transformations, can be of synthetic utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号