共查询到20条相似文献,搜索用时 15 毫秒
1.
Victor Ryzhov Adrian K. Y. Lam Richard A. J. O’Hair 《Journal of the American Society for Mass Spectrometry》2009,20(6):985-995
In this work, we describe two different methods for generating protonated S-nitrosocysteine in the gas phase. The first method
involves a gas-phase reaction of protonated cysteine with t-butylnitrite, while the second method uses a solution-based transnitrosylation reaction of cysteine with S-nitrosoglutathione
followed by transfer of the resulting S-nitrosocysteine into the gas phase by electrospray ionization mass spectrometry (ESI-MS).
Independent of the way it was formed, protonated S-nitrosocysteine readily fragments via bond homolysis to form a long-lived
radical cation of cysteine (Cys•+), which fragments under collision-induced dissociation (CID) conditions via losses in the following relative abundance order:
•COOH ≫ CH2S > •CH2SH-H2S. Deuterium labeling experiments were performed to study the mechanisms leading to these pathways. DFT calculations were
also used to probe aspects of the fragmentation of protonated S-nitrosocysteine and the radical cation of cysteine. NO loss
is found to be the lowest energy channel for the former ion, while the initially formed distonic Cys•+ with a sulfur radical site undergoes proton and/or H atom transfer reactions that precede the losses of CH2S, •COOH, •CH2SH, and H2S. 相似文献
2.
The gas phase reactions of protonated tryptophan have been examined in a quadrupole ion trap using a combination of collision induced dissociation, hydrogen-deuterium exchange, regiospecific deuterium labeling and molecular orbital calculations (at the B3LYP/6-31G* level of theory). The loss of ammonia from protonated tryptophan is observed as the primary fragmentation pathway, with concomitant formation of a [M + H - NH(3)](+) ion by nucleophilic attack from the C3 position of the indole side chain. Hydrogen-deuterium exchange and regiospecific deuterium labeling reveals that scrambling of protons in the C2 and C4 positions of the indole ring, via intramolecular proton transfer from the thermodynamically preferred site of protonation at the amino nitrogen, precedes ammonia loss. Molecular orbital calculations have been employed to demonstrate that the activation barriers to intramolecular proton transfer are lower than that for NH(3) loss. 相似文献
3.
Protonated water clusters with 60 to 79 molecules have been studied by nanocalorimetry. The technique is based on multi-collision excitations of the accelerated clusters with helium. The caloric curves indicate transitions that resemble those of water clusters charged by an excess electron, but the transition temperatures of the protonated clusters are higher. 相似文献
4.
Gas-phase proton-transfer pathways in protonated histidylglycine 总被引:1,自引:0,他引:1
Pathways for proton transfer in the histidylglycine cation are examined in the gas-phase environment with the goal of understanding the mechanism by which protons may become mobile in proteins with basic amino acid residues. An extensive search of the potential energy surface is performed using density functional theory (DFT) methods. After corrections for zero-point energy are included, it is found that all the lowest energy barriers for proton transfer between the N-terminus and the imidazole ring have heights of only a few kcal/mol, while those between the imidazole ring and the backbone amide oxygen have heights of approximately 15 kcal/mol when the proton is moving from the ring to the backbone and only a few kcal/mol when moving from the backbone to the imidazole ring. In mass spectrometric techniques employing collision-induced dissociation to dissociate protein complex ions or to fragment peptides, these barriers can be overcome, and the protons mobilized. Copyright (c) 2008 John Wiley & Sons, Ltd. 相似文献
5.
Sleno L Volmer DA Kovacević B Maksić ZB 《Journal of the American Society for Mass Spectrometry》2004,15(4):462-477
The aim of this study was to investigate the behavior of the protonated paralytic shellfish poisons saxitoxin (STX) and neosaxitoxin (NEO) in the gas-phase after ion activation using different tandem mass spectrometry techniques. STX and NEO belong to a group of neurotoxins produced by several strains of marine dinoflagellates. Their chemical structures are based on a tetrahydropurine skeleton to which a 5-membered ring is fused. STX and NEO only vary in their substituent at N-1, with STX carrying hydrogen and NEO having a hydroxyl group at this position. The collision-induced dissociation (CID) spectra exhibited an unusually rich variety and abundance of species due to the large number of functional groups within the small skeletal structures. Starting with triple-quadrupole CID spectra as templates, linked ion-trap MSn data were added to provide tentative dissociation schemes. Subsequent high-resolution FTICR experiments gave exact mass data for product ions formed via infrared multiphoton dissociation (IRMPD) from which elemental formulas were derived. Calculations of proton affinities of STX and NEO suggested that protonation took place at the guanidinium group in the pyrimidine ring for both molecules. Most of the observed parallel and consecutive fragmentations could be rationalized through neutral losses of H2O, NH3, CO, CO2, CH2O and different isocyanate, ketenimine and diimine species, many of which were similar for STX and NEO. Several exceptions, however, were noted and differences could be readily correlated with reactions involving NEO's additional hydroxyl group. A few interesting variations between CID and IRMPD spectra are also highlighted in this paper. 相似文献
6.
Remeš M Roithová J Schröder D Cope ED Perera C Senadheera SN Stensrud K Ma CC Givens RS 《The Journal of organic chemistry》2011,76(7):2180-2186
Electrospray ionization of methanolic solutions of p-hydroxyphenacyl derivatives HO-C(6)H(4)-C(O)-CH(2)-X (X = leaving group) provides abundant signals for the deprotonated species which are assigned to the corresponding phenolate anions (-)O-C(6)H(4)-C(O)-CH(2)-X. Upon collisional activation in the gas phase, these anions inter alia undergo loss of a neutral "C(8)H(6)O(2)" species concomitant with formation of the corresponding anions X(-). The energies required for the loss of the neutral roughly correlate with the gas phase acidities of the conjugate acids (HX). Extensive theoretical studies performed for X = CF(3)COO in order to reveal the energetically most favorable pathway for the formation of neutral "C(8)H(6)O(2)" suggest three different routes of similar energy demands, involving a spirocyclopropanone, epoxide formation, and a diradical, respectively. 相似文献
7.
The unimolecular fragmentation reactions of 28 protonated nitroarenes, occurring on the metastable ion time-scale, are reported. In addition, the collision-induced fragmentation of the same species have been studied at 10 eV and at 50 eV collision energy. When an OH, COOH or NH2 substituent is ortho to the nitro function, the dominant fragmentation involves loss of H2O, for both unimolecular and collision-induced reactions. When there is an electron-releasing substituent ortho or para to the litro group, loss of OH is the dominant fragmentation reaction both on the metastable ion time-scale and for ions activated by collision. When the electron-releasing substituent is meta to the nitro group, loss of NO2 is the dominant low-energy unimolecular fragmentation reaction while loss of HNO2 is the most important fragmentation for ions activated by 50 eV collisions. Elimination of NO from [MH]+ occurs to a significant extent in the unimolecular fragmentation of protonated nitrobenzene and those protenated nitrobenzenes containing electron- attracting substituents. In the collision-induced dissociation of these species loss of HNO2 occurs at the expense of loss of NO. The results are consistent with protonation predominantly at the nitro group. The results are discussed in terms of the use of neutral loss scans in tandem mass spectrometry to monitor complex mixtures for nitroarenes. 相似文献
8.
Eric S. Simon Panagiotis G. Papoulias Philip C. Andrews 《Journal of the American Society for Mass Spectrometry》2010,21(9):1624-1632
The fragmentation characteristics of peptides derivatized at the side-chain ε-amino group of lysyl residues via reductive
amination with benzaldehyde have been examined using collision-induced dissociation (CID) tandem mass spectrometry. The resulting
MS/MS spectra exhibit peaks representing product ions formed from two independent fragmentation pathways. One pathway results
in backbone fragmentation and commonly observed sequence ion peaks. The other pathway corresponds to the unsymmetrical, heterolytic
cleavage of the Cζ-Nε bond that links the benzyl derivative to the side-chain lysyl residue. This results in the elimination of the derivative
as a benzylic or tropylium carbocation and a (n − l)+-charged peptide product (where n is the precursor ion charge state). The frequency of occurrence of the elimination pathway
increases with increasing charge of the precursor ion. For the benzylmodified tryptic peptides analyzed in this study, peaks
representing products from both of these pathways are observed in the MS/MS spectra of doubly-charged precursor ions, but
the carbocation elimination pathway occurs almost exclusively for triply-charged precursor ions. The experimental evidence
presented herein, combined with molecular orbital calculations, suggests that the elimination pathway is a charge-directed
reaction contingent upon protonation of the secondary ε-amino group of the benzyl-derivatized lysyl side chain. If the secondary
ε-amine is protonated, the elimination of the carbocation is observed. If the precursor is not protonated at the secondary
ε-amine, backbone fragmentation persists. The application of appropriately substituted benzyl analogs may allow for selective
control over the relative abundance of product ions generated from the two pathways. 相似文献
9.
10.
A major low-energy fragmentation reaction of many protonated dipeptides involves cleavage of the amide bond resulting in formation of either the y(1)" ion or the a(1) ion. For a series of protonated dipeptides H-Val-Xxx-OH it is observed that log(y(1)"/a(1)) is a linear function of the proton affinity of the variable C-terminal amino acid. For the series of protonated dipeptides H-Xxx-Phe-OH log(a(1)/y(1)") gives a poor correlation with the proton affinity or gas-phase basicity of H-Xxx-OH. However, a good limited correlation of log(a(1)/y(1)") with the Taft-Topsom sigma(alpha) for the alkyl group is observed when Xxx is an aliphatic amino acid. It is proposed that fragmentation occurs by initial formation of a proton-bound complex of an aziridinone and an amino acid which may fragment to form either a protonated amino acid (y(1)") or an N-protonated aziridinone with the corresponding neutrals being an aziridinone and an amino acid. Ab initio calculations show that the N-protonated aziridinone is unstable and fragments by loss of CO to form the a(1) immonium ion. However, the proton-bound complex of an aziridinone and an amine base is a stable species which exists in a potential well. Copyright 2000 John Wiley & Sons, Ltd. 相似文献
11.
Csonka IP Paizs B Lendvay G Suhai S 《Rapid communications in mass spectrometry : RCM》2001,15(16):1457-1472
Theoretical model calculations were performed to validate the 'mobile proton' model for protonated lysylglycine (KG). Detailed scans carried out at various quantum chemical levels of the potential energy surface (PES) of protonated KG resulted in a large number of minima belonging to various protonation sites and conformers. Transition structures corresponding to proton transfer reactions between different protonation sites were determined, to obtain some energetic and structural insight into the atomic details of these processes. The rate coefficients of the proton transfer reactions between the isomers were calculated using the Rice-Ramsperger-Kassel-Marcus (RRKM) method in order to obtain a quantitative measure of the time-scale of these processes. Our results clearly indicate that the added proton is less mobile for protonated KG than for peptides lacking a basic amino acid residue. However, the energy needed to reach the energetically less favorable but-from the point of view of backbone fragmentation-critical amide nitrogen protonation sites is available in tandem mass spectrometers operated under low-energy collision conditions. Using the results of our scan of the PES of protonated KG, the dissociation pathways corresponding to the main fragmentation channels for protonated KG were also determined. Such pathways include loss of ammonia and formation of a protonated alpha-amino-epsilon-caprolactam. The results of our theoretical modeling, which revealed all the atomic details of these processes, are in agreement with the available experimental results. 相似文献
12.
13.
Protonated and methyl-cationated n-octanonts and n-nonanones have been prepared by chemical ionization methods and the unimolecular fragmentation reactions occurring on the metastable ion time-scale have been exam ined. The [R1R2COR3]+ (R3 = H or CH3) species fragment by elimination of R3OH and by elimination of neutral alkenes. The elimination of (R1 — H), where R1 is the larger alkyl group of the original ketone, is particularly important. In addition, alkenyl ions are observed corresponding, nominally, to elimination of C3H7OR3 from the ionized octanones and to elimination of C3H7OR3 and C4H9OR3 from the nonanones. These ions are shown to arise largely, if not completely, by sequential elimination of R3OH plus an olefin (C3H6 or C4H8) from [R1R2COR3]+. A comparison is made of the unimolecular fragmentation reactions occurring in the second field-free region and in the radio-frequency-only quadrupole of a hybrid BEQQ mass spectrometer. 相似文献
14.
Ion-neutral complexes, well attested as intermediates in the expulsion of alkenes from M+? and MH+ ions from primary alkyl phenyl ethers, are shown to intervene in the decomposition of the MH+ ion of a secondary alkyl phenyl ether, (CD3)2CHOPh. Chemical ionization (CI) (methane reagent gas)-mass-analysed ion kinetic energy spectroscopy (MIKES) shows ions of both m/z 96 and 97, indicating that the proton deposited by the CI reagent exchanges with the methyl deuterium atoms. The ratio of daughter ion intensities, as well as the proportions of ions of m/z 95, 96 and 97 from the MH+ of CD3CH2CD2OPh, agree with predictions based on the gas-phase solvolysis mechanism, in which [i-Pr+ PhOH] complexes form from the protonated parent via simple bond heterolysis. An alternative mechanism, elimination-readdition, would proceed via [propene PhOHD+] complexes. This latter mechanism predicts a ratio of daughter ion intensities that is very different from gas-phase solvolysis and which disagrees with experiment. The elimination-readdition pathway is effectively ruled out, while the gas-phase solvolysis mechanism is reinforced. 相似文献
15.
Gas-phase reactions of multiply protonated polypeptides and metal containing anions represent a new methodology for manipulating the cationizing agent composition of polypeptides. This approach affords greater flexibility in forming metal containing ions than commonly used methods, such as electrospray ionization of a metal salt/peptide mixture and matrix-assisted laser desorption. Here, the effects of properties of the polypeptide and anionic reactant on the nature of the reaction products are investigated. For a given metal, the identity of the ligand in the metal containing anion is the dominant factor in determining product distributions. For a given polypeptide ion, the difference between the metal ion affinity and the proton affinity of the negatively charged ligand in the anionic reactant is of predictive value in anticipating the relative contributions of proton transfer and metal ion transfer. Furthermore, the binding strength of the ligand anion to charge sites in the polypeptide correlates with the extent of observed cluster ion formation. Polypeptide composition, sequence, and charge state can also play a notable role in determining the distribution of products. In addition to their usefulness in gas-phase ion synthesis strategies, the reactions of protonated polypeptides and metal containing anions represent an example of a gas-phase ion/ion reaction that is sensitive to polypeptide structure. These observations are noteworthy in that they allude to the possibility of obtaining information, without requiring fragmentation of the peptide backbone, about ion structure as well as the relative ion affinities associated with the reactants. 相似文献
16.
17.
Lianming Wu David Q. Liu Alireza S. Kord 《Journal of the American Society for Mass Spectrometry》2010,21(10):1802-1813
Ethylnitrilium ion can be generated by protonation of acetonitrile (when used as the LC-MS mobile phase) under the conditions of atmospheric pressure ionizations, including electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) as well as atmospheric pressure photoionization (APPI). Ethylnitrilium ion (CH3 - C o mathop N+ HCH_3 - C equiv mathop Nlimits^ + H and its canonical form CH3 - mathop C+ = NHCH_3 - mathop Climits^ + = NH) is shown to efficiently undergo the gas-phase Meerwein reaction with epoxides. This reaction proceeds by the initial formation of an oxonium ion followed by three-to-five-membered ring expansion via an intramolecular nucleophilic attack to yield the Meerwein reaction products. The density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level show that the gas-phase Meerwein reaction is thermodynamically favorable. Collision-induced dissociation (CID) of the Meerwein reaction products yields the net oxygen-by-nitrogen replacement of epoxides with a characteristic mass shift of 1 Da, providing evidence for the cyclic nature of the gas-phase Meerwein reaction products. The gas-phase Meerwein reaction offers a novel and fast LC-MS approach for the direct analysis of epoxides that might be of genotoxic concern during drug development. Understanding and utilizing this unique gas-phase ion/molecule reaction, the sensitivity and selectivity for quantitation of epoxides can be enhanced. 相似文献
18.
Quantum chemical and RRKM calculations were carried out on protonated glycylglycine in order to determine the atomic details of the main fragmentation pathways leading to formation of a1 and y1 ions. Two possible mechanisms were considered. The first path results in elimination of aziridinone as a neutral counterpart of the y1 ion formed. Our calculations show that this pathway has a relatively high threshold energy (48.6 kcal/mol) and the corresponding unimolecular rate constants are quite small even at large internal energy. An alternative pathway (a1-y1) proposed in the present paper seems, however, to be favored against the above 'aziridinone' one from the points of view of both energetics and kinetics. The 'a1-y1' pathway leads to simultaneous formation of a1 and y1 ions, the ratio of which depends on the energy distribution of the fragmenting species for a particular dipeptide. However, even if y1 ions are formed via the 'a1-y1' pathway, the corresponding neutrals eliminated do not have a strained cyclic aziridinone structure. Instead, in a two-step process, CO and NHCH2 are formed leading to neutral products energetically more favored than aziridinone. The available experimental data reevaluated in the present paper lend support to the 'a1-y1' pathway. 相似文献
19.
Dieter R. Mueller Bruno Domon Wolfgang Blum Wilhelm J. Richter Hartmut Reiner Rolf Keller Peter Fischer 《Journal of mass spectrometry : JMS》1989,24(3):157-163
The fragmentation of 2,7-octanedione, induced by chemical ionization with methane as a reagent gas (CI (CH4)), is shown to be extensively governed by the interaction of the two carbonyl groups. Tandem mass spectrometry reveals that a sequential loss of H2O and C2H4O from the [M + H]+ ion competes with sequential loss of H2O and C6H10, and that both processes occur via the same [MH - H2O]+ intermediate. This intermediate is likely to be formed via intramolecular gas-phase aldol condensation and subsequent dehydration. The resulting C(1) protonated 1-acetyl-2-methylcyclopentene structure readily accounts for the observed further decomposition to CH3C?O+ and 1-methylcyclopentene (C6H10) or, alternatively, to [C6H9]+ (e. g. 1-methylcyclopentenylium) ions and acetaldehyde (C2H4O). Support for this mechanistic rationale is derived from deuterium isotope labelling and low-energy collision-induced dissociation (CID) of the [MH - H2O]+ ion. The common intermediate shows a CID behaviour indistinguishable by these techniques from that of reference ions, which are produced by gas-phase protonation of the authentic cyclic aldol or by gas-phase addition of an acetyl cation to 1-methylcyclopentene in a CI (CH3COOCH3) experiment. 相似文献
20.
Custer TG Kato S Bierbaum VM Howard CJ Morrison GC 《Journal of the American Chemical Society》2004,126(9):2744-2754
The gas-phase reactions of protonated hydrazine (hydrazinium) with organic compounds were studied in a selected ion flow tube-chemical ionization mass spectrometer (SIFT-CIMS) at 0.5 Torr pressure and approximately 300 K and with hybrid density functional calculations. Carbonyl and other polar organic compounds react to form adducts, e.g., N(2)H(5)(+)(CH(3)CH(2)CHO). In the presence of neutral hydrazine, aldehyde adducts react further to form protonated hydrazones, e.g., CH(3)CH(2)CH[double bond]HNNH(2)(+) from propanal. Using deuterated hydrazine (N(2)D(4)) and butanal, we demonstrate that the gas-phase ion chemistry of hydrazinium and carbonyls operates by the same mechanisms postulated for the reactions in solution. Calculations provide insight into specific steps and transition states in the reaction mechanism and aid in understanding the likely reaction process upon chemical or translational activation. For most carbonyls, rate coefficients for adduct formation approach the predicted maximum collisional rate coefficients, k approximately 10(-9) cm(3) molecule(-1) s(-1). Formaldehyde is an exception (k approximately 2 x 10(-11) cm(3) molecule(-1) s(-1)) due to the shorter lifetime of its collision complex. Following adduct formation, the process of hydrazone formation may be rate limiting at thermal energies. The combination of fast reaction rates and unique chemistry shows that protonated hydrazine can serve as a useful chemical-ionization reagent for quantifying atmospheric carbonyl compounds via CIMS. Mechanistic studies provide information that will aid in optimizing reaction conditions for this application. 相似文献