首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以对模板分子具有较强识别特性的分子印迹聚合物为基质固相分散吸附剂, 提取牛奶中痕量氯霉素, 最后用HPLC法测定. 研究了氯霉素分子印迹聚合物对样品中氯霉素的提取和净化效果, 在优化条件下, 方法的检出限为0.15 ng/mL, 定量限为0.50 ng/mL. 不同氯霉素添加量的回收率大于93.2%, RSD<5.9%. 方法适用于牛奶中氯霉素残留的测定.  相似文献   

2.
The synthesis and evaluation of a molecularly imprinted polymer (MIP) used as a selective solid-phase extraction sorbent and coupled to high-performance liquid chromatography (HPLC) for the efficient determination of sulfamerazine (SMR) in pond water and three fishes are reported. The polymer was prepared using SMR as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the crosslinking monomer in the presence of tetrahydrofuran as the solvent. The SMR-imprinted polymers and nonimprinted polymers were characterized by FT-IR and static adsorption experiments. The prepared SMR-imprinted material showed a high adsorption capacity, significant selectivity and good site accessibility. The maximum static adsorption capacities of the SMR-imprinted and nonimprinted materials for SMR were 108.8 and 79.6 mg g−1, respectively. The relative selectivity factor of this SMR-imprinted material was 1.6. Several parameters influencing the solid-phase extraction process were optimized. Finally, the SMR-imprinted polymers were used as the sorbent in solid-phase extraction to determine SMR in pond water and three fishes with satisfactory recovery. The average recoveries of the MIP-SPE method were 94.0% in ultrapure water and 95.8% in pond water. Relative standard deviations ranging from 0.3% to 5.2% in MIP were acquired. The results for the SMR concentrations in crucian, carp and wuchang fish were 66.0, 127.1 and 51.5 ng g−1, respectively. The RSDs (n = 5) were 3.51%, 0.53% and 5.08%, respectively. The limit of detection (LOD) for SMR was 1 ng g−1 and the limit of quantitation (LOQ) was 3.5 ng g−1.  相似文献   

3.
Matrix solid-phase dispersion (MSPD) method coupled with gas chromatography flame ionisation detector as a quick and easy extraction technique has been developed to extract carvacrol from plants and herbal medicines. Influence of important parameters on the MSPD method efficiency, such as the sorbent material, the ratio of sample to sorbent material, elution solvent and volume of the elution solvent has been evaluated and optimised. Carvacrol was successfully extracted by diatomaceous earth as sorbent with 350 μL of dichloromethane as elution solvent. The calibration curve showed good linearity (r2 = 0.9965) and precision (RSD < 8.16%) in the concentration range of 0.5–100 μg mL? 1 for carvacrol. The limit of detection and limit of quantification were 0.1 and 0.5 μg mL? 1, respectively. The recoveries were in the range of 74.4–80.5% with relative standard deviation (RSD) values ranging from 8.4% to 9.8%. The reported MSPD extraction method revealed to be simpler and faster than conventional methods used to quantify carvacrol from plants and herbal medicines.  相似文献   

4.
The molecularly imprinted polymer (MIP) was synthesized and used as dispersant of matrix solid‐phase dispersion (MSPD) for the extraction of chloramphenicol (CAP) in soil samples. The satisfactory recovery of CAP was obtained by the optimized extraction conditions: 1:2 as the ratio of sample to MIPs; 5 min as the dispersion time; 30% aqueous methanol as washing solvent and methanol as elution solvent. The CAP extracted from soil was determined by LC‐MS/MS. The slight ion suppression phenomenon was observed for the CAP when the sample was cleaned up by MSPD with MIP as dispersant, when compared with C18 as MSPD dispersant, which caused significant ion suppression. LOD of CAP is 4.1 ng/g. RSDs of intra‐ and inter‐day tests ranging from 3.1 to 6.2% and from 3.9 to 8.3% are obtained. At all three fortified levels (20, 100 and 500 ng/g), recoveries of CAP are in the range of 86.9–92.6%. The effect of ageing time of spiked soil sample on the CAP recovery was examined. The CAP recovery decreased from 91.0 to 36.9% when the ageing time changed from 1 day to 4 wk.  相似文献   

5.
A method based on matrix solid-phase dispersion (MSPD) and gas chromatography to determine eight fungicides in fruits and vegetables is described. Fungicide residues were identified and quantified using nitrogen-phosphorus detection and electron-capture detection connected in parallel and confirmed by mass spectrometric detection. The method required 0.5 g of sample, C18 bonded silica as dispersant sorbent, silica as clean-up sorbent and ethyl acetate as eluting solvent. Recoveries from spiked orange, apple, tomato, artichoke, carrot and courgette samples ranged from 62 to 102% and relative standard deviations were less than 15% in the concentration range 0.05-10 mg kg(-1). Detection and quantitation limits ranged 3-30 microg kg(-1) and 10-100 microg kg(-1), respectively, with linear calibration curves up to 10 mg kg(-1). The analytical characteristics of MSPD compared very favourably with the results of a classical multiresidue method, which uses ethyl acetate and anhydrous sodium sulphate for the extraction.  相似文献   

6.
A novel sorbent for the determination of clenbuterol in bovine liver.   总被引:2,自引:0,他引:2  
E Horne  M O'Keeffe  C Desbrow  A Howells 《The Analyst》1998,123(12):2517-2520
The use of three C18 sorbents in matrix solid phase dispersion (MSPD) for the determination of clenbuterol in bovine liver fortified at 5 ng g-1 is described. MSPD grade C18 sorbents give rise to more efficient blending and packing of the material for subsequent washing and analyte elution in comparison with a non-MSPD grade C18 sorbent. Following enzymatic deconjugation of the liver extracts, radioimmunoassay is used as the method of determination. The mean recovery of clenbuterol with all sorbents is comparable and within the range 86-96% in two intra-assay studies (n = 3). The liver extracts in each case are highly coloured. The variation in recovery is observed to be lowest with MSPD grade C18 (end-capped). This sorbent was used in further studies to evaluate the use of solid phase extraction (SPE), post MSPD, with normal phase aminopropyl or mixed mode cation exchange columns for extract purification. The mean recovery of clenbuterol (n = 4, inter-assay study) following MSPD and normal phase SPE clean-up was 95 +/- 15% and 89 +/- 9% at fortification levels of 1 and 2.5 ng g-1, respectively.  相似文献   

7.
A selective sample cleanup method using molecularly imprinted polymers was developed for the separation of domoic acid (a shellfish toxin) from shellfish samples. The molecularly imprinted polymers for domoic acid was prepared by emulsion polymerization using 1,3,5‐pentanetricarboxylic acid as the template molecule, 4‐vinyl pyridine as the functional monomer, ethylene glycol dimethacrylate as the crosslinker, and Span80/Tween‐80 (1:1 v/v) as the composite emulsifiers. The molecularly imprinted polymer showed high affinity to domoic acid with a dissociation constant of 13.5 μg/mL and apparent maximum adsorption capacity of 1249 μg/g. They were used as a selective sorbent for the detection of domoic acid from seafood samples coupled with high‐performance liquid chromatography. The detection limit of 0.17 μg/g was lower than the maximum level permitted by several authorities. The mean recoveries of domoic acid from clam samples were 93.0–98.7%. It was demonstrated that the proposed method could be applied to the determination of domoic acid from shellfish samples.  相似文献   

8.
Some new molecularly imprinted polymers (MIPs) were prepared by different protocols involving vanillin as the imprinted molecule, methacrylic acid (= 2‐methylprop‐2‐enoic acid; MAA) as the functional monomer, and ethylene glycol dimethacrylate (EGDMA = 2‐methylprop‐2‐enoic acid ethane‐1,2‐diyl ester) as the cross‐linking agent. The adsorption property of the imprinted polymers was studied by UV spectrophotometry and HPLC. The results indicated that the porogen solvent had a certain influence on the adsorption performance of the polymer. The vanillin‐imprinted polymer MIP1 prepared with MeOH as porogen, exhibited advantageous characteristics, i.e., a high binding activity, a good selectivity, and a rapid adsorption equilibrium. The binding parameters studied by Scatchard analysis established that there are two types of binding sites in MIP1. Finally, by packing an SPE column (SPE = solid‐phase extraction) with the polymer MIP1, the vanillin was separated and enriched successfully by this sorbent from the samples of Vanilla fragrans and beer.  相似文献   

9.
采用分子印迹本体聚合法,制备了对内分泌干扰物雌酮具有高选择识别能力的分子印迹聚合物。吸附动力学和选择性实验结果表明,与非印迹聚合物相比,印迹聚合物具有较高的吸附容量和吸附速率,对模板分子具有较高的选择性。聚合反应条件对印迹聚合物的吸附和识别性能有重要影响,以丙烯酰胺为功能单体,模板分子、功能单体和交联剂摩尔比为1:3:6,制备的印迹聚合物具有较高的选择和吸附性能。  相似文献   

10.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

11.
A novel molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed for the selective extraction of telmisartan from human urine. Molecularly imprinted polymers were prepared by a noncovalent imprinting approach through UV‐radical polymerization using telmisartan as a template molecule, 2‐dimethylamino ethyl methacrylate as a functional monomer, ethylene glycol dimethacrylate as a cross‐linker, N,N‐azobisisobutyronitrile as an initiator, chloroform as a porogen. Molecularly imprinted polymers and nonimprinted control polymer sorbents were dry‐packed into solid‐phase extraction cartridges, and eluates from cartridges were analyzed using a spectrofluorimeter. Limit of detection and limit of quantitation values were 11.0 and 36.0 ng/mL, respectively. A very high imprinting factor (16.1) was achieved and recovery values for the telmisartan spiked in human urine were in the range of 76.1–79.1%. In addition, relatively low within‐day (0.14–1.6%) and between‐day (0.11–1.31%) precision values were obtained. Valsartan was used to evaluate the selectivity of sorbent as well. As a result, a sensitive, selective, and simple molecularly imprinted solid‐phase extraction with spectrofluorimetry method has been developed and successfully applied to the direct determination telmisartan in human urine.  相似文献   

12.
An extraction technique is described for vitamin K1 in medical foods, using accelerated solvent extraction (ASE) in conjunction with matrix solid-phase dispersion (MSPD). The medical food sample is treated as it would be with MSPD extraction, followed by ASE for a hands-free automated extraction. The vitamin K1 in the ASE extract is then quantitated by reversed-phase liquid chromatography with fluorescence detection. The chromatography specifications are identical to those in previous work that used MSPD only, with a limit of detection of 6.6 pg and a limit of quantitation of 22 pg on column. Recoveries, which were determined for an analyte-fortified zero control reference material for medical foods, averaged 97.6% (n = 25) for vitamin K1. The method provides a rapid, automatic, specific, and easily controlled assay for vitamin K1 in fortified medical foods with minimal solvent usage.  相似文献   

13.
A novel Ni(Ⅱ) ion-imprinted silica gel polymer was prepared via the surface imprinting technique combined with aqueous solution polymerization by using 2-acrylamido-2-methyl-1-propanesulfonic acid(AMPS) as a functional monomer for the selective separation of Ni(Ⅱ) from aqueous solution. The sorbent showed good chemical and thermal stability. Kinetics studies indicated that the equilibrium adsorption was achieved within 10 min and the adsorption kinetics fitted well with the pseudo-second-order kinetic model. The maximum adsorption capacity of the ion-imprinted polymer towards Ni(Ⅱ) at the optimal p H of 7.0 was 66.22 mg·g~(-1). The relative selectivity coefficients of the sorbent were 9.23, 15.71, 14.72 and 20.15 for Ni(Ⅱ)/Co(Ⅱ), Ni(Ⅱ)/Cu(Ⅱ), Ni(Ⅱ)/Zn(Ⅱ) and Ni(Ⅱ)/Pb(Ⅱ), respectively. The adsorption isotherm fitted well with Langmuir isotherm model. The thermodynamic results indicated that the adsorption of Ni(Ⅱ) was a spontaneous and endothermic process. The sorbent showed good reusability evidenced by six cycles of adsorption/desorption experiments. The precision of this method is satisfactory. Thus, the prepared sorbent can be considered as a promising sorbent for selective separation of Ni(Ⅱ) in real water samples.  相似文献   

14.
In this paper, a highly selective sample cleanup procedure combining molecular imprinting and solid-phase extraction (MI-SPE) was developed for the isolation of melamine in dairy products. The molecularly imprinted polymer (MIP) was prepared using melamine as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The melamine imprinted polymer was used as selective sorbent for the solid-phase extraction of melamine from dairy products. An off-line MI-SPE method followed by high-performance liquid chromatography with diode-array detection for the detection of melamine was also established. The mean recoveries of melamine from ultra-heat treatment (UHT) milk and milk powders were 92.9-98.0% and 91.6-102.8%, respectively. Good linearity was obtained from 0.5 μM to 10 μM (r > 0.999) with a quantitation limit of 0.5 μmol/L (0.06 ppm) which was sufficient to analyse melamine at the maximum level permitted by U.S. Food and Drug Administration (1 ppm) in dairy products. It was demonstrated that the proposed MI-SPE-HPLC method could be applied to direct determination of melamine in dairy products.  相似文献   

15.
We developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high‐yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water‐soluble azobenzene involving 5‐[(4, 3‐(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross‐linker. Through the evaluation of a series of features of spectroscopic and nano‐structural, this sorbent showed excellent selective adsorption, recognition for the template, and provided a highly selective and sensitive strategy for determining the methylprednisoloneacetate in real and pharmaceutical samples. In addition, this sorbent according to good photo‐responsive features and specific affinity to methylprednisoloneacetate with high recognition ability, represented higher binding capacity, a more extensive specific area, and faster mass transfer rate than its corresponding surface molecularly imprinted polymer.  相似文献   

16.
A new and selective sorbent for molecularly imprinted solid-phase extraction (MISPE) was developed and applied for the determination of residues of fenitrothion (FNT) in tomatoes, using HPLC coupled to photodiode array detection (HPLC-DAD). Using FNT as the template molecule, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, toluene as the porogenic solvent, and bulk polymerization as the synthetic method, a molecularly imprinted polymer (MIP) was synthesized. In order to choose the medium which promotes the best molecular recognition of FNT by the MIP, the adsorption of FNT by the MIP was studied in different media containing acetonitrile and toluene. Besides FNT, three structurally related compounds were used to evaluate the selectivity of the FNT-molecularly imprinted polymer. The MIP exhibited the highest selective rebinding to FNT. The method developed was validated, using fortified blank tomato samples. The extraction efficiency was 96%. The limits of detection and quantitation were 0.050 and 0.130 μg g−1, respectively. The intra-day precision was 5.9% and the inter-day precision 8.1%. The accuracy was higher than 89% for a concentration level around the maximum residue limit of 0.5 μg g−1.  相似文献   

17.
Liquid chromatography of macromolecules at the critical adsorption point (LC CAP) presents a potentially very powerful method for molecular characterization of complex polymers. However, LC CAP applicability is limited due to various experimental problems. The pore sizes and surface chemistry of the column packings belong to the most important weak points of the method. The LC CAP behavior of poly(methyl methacrylate)s was investigated using bare silica gels of 6, 12, and 100 nm pore sizes and with various amounts of surface silanols. Tetrahydrofuran as the adsorption suppressing liquid and toluene as the adsorption promoting liquid were mixed to form the “nearly critical” eluents. Both pore size and surface chemistry of silica were found to strongly influence the retentive characteristics of the system in the critical adsorption area. Macromolecules that were large enough to be excluded from the packing pores hardly followed the LC CAP rules: their retention volumes changed irregularly with the polymer molar mass and their recovery dropped sharply. The narrow pore silica gel-packed column governed the elution patterns of the whole column set composed of silica gels with different pore sizes. This makes the conventional LC CAP characterization of common polymers with broader molar mass distribution impractical and even not feasible. A hybrid column system was proposed containing narrow pore nonadsorptive column added in series to the meso- and macroporous LC CAP silica gels. This narrow pore column would allow separation of gas, impurities, and system peaks from the polymer peaks. The possible successive changes of the surface of silica gel, e.g., due to formation of silanols by hydrolysis or due to irreversible adsorption of some admixtures from the sample or eluent may make the LC CAP irrepeatable. Pronounced peak broadening was observed in the critical adsorption area and this effect increased strongly with the polymer molar mass. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1363–1371, 1998  相似文献   

18.
Solid-phase extraction (SPE) with a molecularly imprinted polymer (MIP) as sorbent has been investigated for the clean-up of the broad-spectrum bacteriostatic antibiotic chloramphenicol (CAP) in honey samples. The MIP was prepared by using methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker, chloroform as porogen and CAP as template molecule. The binding behaviour of the template CAP on the MIP was evaluated by high-performance liquid chromatography, and then the MIP was applied as a sorbent in SPE to selectively extract CAP from honey. It was shown that recoveries of nearly 100% of a CAP standard solution and up to 94% from spiked honey samples could be obtained after SPE.  相似文献   

19.
A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012–0.120 ng g−1 for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N = 10 were from 0.04 to 0.40 ng g−1 for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7–103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples.  相似文献   

20.
Organophosphorus insecticides are widely employed in agriculture, and residues of them can remain after harvesting or storage. Pesticide residue control is an important task for ensuring food safety. Common chromatographic methods used in the determination of pesticide residues in food require clean-up and concentration steps prior to quantitation. While solid-phase extraction has been widely employed for this purpose, there is a need to improve selectivity. Due to their inherent biomimetic recognition systems, molecularly imprinted polymers (MIP) allow selectivity to be enhanced while keeping the costs of analysis low. In this work, a MIP that was designed to enable the selective extraction of fenitrothion (FNT) from tomatoes was synthesized using a noncovalent imprinting approach. The polymer was prepared using methacrylic acid as functional monomer and ethyleneglycol dimethacrylate as crosslinking monomer in dichloromethane (a porogenic solvent). The polymer was characterized by Fourier transform infrared spectroscopy, solid-state nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and nitrogen sorption porosimetry. The pore structure and the surface area were evaluated using the BET adsorption method. To characterize the batch rebinding behavior of the MIP, the adsorption isotherm was measured, allowing the total number of binding sites, the average binding affinity and the heterogeneity index to be established. A voltammetric method of quantifying FNT during the molecularly imprinted solid-phase extraction (MISPE) studies was developed. The polymer was placed in extraction cartridges which were then used to clean up and concentrate FNT in tomato samples prior to high-performance liquid chromatographic quantitation. The material presented a medium extraction efficiency of 59% (for analyses performed with three different cartridges on three days and a fortification level of 5.0 μg g−1) and selectivity when used in the preparation of tomato samples, and presented the advantage that the polymer could be reused several times after regeneration. Figure    相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号