首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrospray ionization (ESI) involves the dispersion of a liquid containing analytes of interest into a fine aerosol by applying a high potential difference to the sample solution with respect to a counter electrode. Thus, from the electrochemical point of view, the ESI source represents a two-electrode controlled-current electrochemical flow cell. The electroactive compounds part of the solvent sprayed may be altered by occurring electrolysis (oxidation in positive ion mode and reduction in negative ion mode). These reactions can be troublesome in the context of unknown identification and quantification. In the search for a simple, inexpensive, and efficient way to suppress electrochemical oxidation in positive ESI, the usability of ascorbic acid, hydroquinone, and glutathione for homogenous redox buffering was tested. Performance of the antioxidants was assessed by analyzing pharmaceutical compounds covering a broad range of functional groups prone to oxidation. Different emitter setups were applied for continuous infusion, flow injection, and liquid chromatography/mass spectrometry experiments. Best performance was obtained with ascorbic acid. In comparison to hydroquinone and glutathione, ascorbic acid offered superior antioxidant activity, a relatively inert oxidation product, and hardly any negative effect on the ionization efficiency of analytes. Furthermore, ascorbic acid suppressed the formation of sodiated forms and was able to induce charge state reduction. Only in the very special case of analyzing a compound isobaric to ascorbic acid, interference with the low-abundant [ascorbic acid+H](+) signal may become a point of attention.  相似文献   

2.
The ionization and transmission efficiencies of an electrospray ionization (ESI) interface were investigated to advance the understanding of how these factors affect mass spectrometry (MS) sensitivity. In addition, the effects of the ES emitter distance to the inlet, solution flow rate, and inlet temperature were characterized. Quantitative measurements of ES current loss throughout the ESI interface were accomplished by electrically isolating the front surface of the interface from the inner wall of the heated inlet capillary, enabling losses on the two surfaces to be distinguished. In addition, the ES current lost to the front surface of the ESI interface was spatially profiled with a linear array of 340-microm-diameter electrodes placed adjacent to the inlet capillary entrance. Current transmitted as gas-phase ions was differentiated from charged droplets and solvent clusters by measuring sensitivity with a single quadrupole mass spectrometer. The study revealed a large sampling efficiency into the inlet capillary (>90% at an emitter distance of 1 mm), a global rather than a local gas dynamic effect on the shape of the ES plume resulting from the gas flow conductance limit of the inlet capillary, a large (>80%) loss of analyte ions after transmission through the inlet arising from incomplete desolvation at a solution flow rate of 1.0 microL/min, and a decrease in analyte ions peak intensity at lower temperatures, despite a large increase in ES current transmission efficiency.  相似文献   

3.
A new electrospray ionization mass spectrometry (ES-MS) approach for quantifying protein—ligand complexes that are prone to in-source (gas-phase) dissociation is described. The method, referred to here as the reference ligand ES-MS method, is based on the direct ES-MS assay and competitive ligand binding. A reference ligand (Lref), which binds specifically to the protein (P), at the same binding site as the ligand (L) of interest, with known affinity and forms a stable protein—ligand complex in the gas phase, is added to the solution. The fraction of P bound to Lref, which is determined directly from the ES mass spectrum, is sensitive to the fraction of P bound to L in solution and enables the affinity of P for L to be determined. A mathematical framework for the implementation of the method in cases where P has one or two specific ligand binding sites is given. Affinities of two carbohydrate-binding proteins, a single chain fragment of a monoclonal antibody and the lectin concanavalin A, for monosaccharide ligands are reported and the results are shown to agree with values obtained using isothermal titration calorimetry.  相似文献   

4.
Using human insulin (MW 5808 Da) as a model compound, the possible strategies towards optimization of sensitivity and selectivity of measurement by electrospray ionization with a standard triple quadrupole mass spectrometer were investigated. For measurement in selected ion-monitoring (SIM) mode, these strategies involved systematic variation of instrumental parameters and spray pH. In this investigation four different operating modes were used corresponding to positive/negative ionization modes with acidic/basic sprays and pH reversed (hereafter termed 'wrong-way-round' operation); the cone voltage was optimized for each mode of operation. When collision-activated dissociation (CAD) is employed, two additional operation modes are possible: namely, low collision energies (10-35 eV, CAD-l) for the generation of sequence-specific fragments and high collision energies (>80 eV, CAD-h) for the generation of nonspecific fragments. Overall, this results in twelve different modes of operation. Loop-injection of aqueous insulin standards were run for each of the twelve operating modes and measurements made for five different charge states (n = 2-6) observable with our instrument that has an upper mass limit of m/z 4000. The signal/noise (S/N) ratio was optimized for each charge state, resulting in 60 measurements. The best S/N ratios (20 000) were achieved under positive SIM conditions with charge state 6 (m/z 969) and under 'wrong-way-round' negative SIM conditions with charge state 3 (m/z 1935). Lower S/N ratios were observed under positive CAD-h conditions with charge state 5 (m/z 1163, S/N 15 000) and positive CAD-l conditions with charge state 6 (m/z 969, S/N 10 000). All other operating modes gave maximum S/N ratios of 4000. For measurement of insulin standards, the results obtained show SIM to give the best S/N ratio. However, for samples in complex matrices, our general experience suggests CAD to be the preferable operating mode. Consequently, for the development of a quantitative method for proteins in general, it might be advocated that all of the twelve operating modes and all relevant charge states be investigated to find the optimum S/N ratio.  相似文献   

5.
Eight naturally occurring capsaicinoids have been determined in Capsicum by use of high-purity standards, with norcapsaicin as an internal standard. The solid standards were rigorously checked for purity. The sensitivity of electrospray ionization (ESI), atmospheric-pressure chemical ionization (APCI), and coordination ion-spray (CIS; with silver) toward the capsaicinoids were measured and compared. The highest sensitivity was found for positive-ion ESI. Method validation of the liquid chromatography–ESI-mass spectrometry (LC–ESI-MS) determination is reported, including tests for repeatability (4%), detection limit (5 pg injected), linear range (20–6 ng injected), quantitation (excellent linearity; <2% relative standard deviation), and recovery (99–103%). The major and minor capsaicinoids in a commercial plant extract and in chili pepper fruits were quantified.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

6.
Developments in ion mobility spectrometry–mass spectrometry   总被引:4,自引:0,他引:4  
Ion mobility spectrometry (IMS) has been used for over 30 years as a sensitive detector of organic compounds. The following is a brief review of IMS and its principles with an emphasis on its usage when coupled to mass spectrometry. Since its inception, IMS has been interfaced with quadrupole, time-of-flight, and Fourier-transform ion cyclotron resonance mass spectrometry. These hybrid instruments have been employed for the analysis of a variety of target analytes, including biomolecules, explosives, chemical warfare degradation products, and illicit drugs.  相似文献   

7.
Mass spectrometry (MS) is a fundamental technique to identify compounds by their mass-to-charge ratio. It is known that MS can only detect target compounds when they are converted to ions in the gas phase. The ionization procedure is considered one of the most critical steps, and there are distinct techniques for it. One of them is electron ionization (EI), a widely used hard-ionization technique capable of generating several ions due to the excess energy employed. The existence of distinct ionization mechanisms turns EI capable of producing a fingerprint-like spectrum for each molecule. So, it is an essential technique for obtaining structural information. EI is often combined with chromatography to obtain a practical introduction of pretreated samples despite its excellent performance. EI–MS has been applied coupled with gas chromatography (GC) since the 1960s as both are very compatible. Currently, analytes of interest are more suitable for liquid chromatography (LC) analysis, so there are researchers dedicated to developing suitable interfaces for coupling LC and EI–MS. EI excels, as a reliable technique to fill the gap between GC and LC, possibly allowing them to coexist in a single instrument. In this work, the authors will present the fundamentals of EI–MS, emphasizing the development over the years, coupling with gas and LC, and future trends.  相似文献   

8.
A liquid chromatography–electrospray-tandem mass spectrometry (ES-MS/MS) method was developed for the speciation analysis of four organic selenium species of relevance to human urinary metabolism, namely trimethylselenomium ion (TMSe+), selenomethionine (SeMet) and the two selenosugars, methyl 2-acetamido-2-deoxy-1-seleno-β-d-galactos/-glucos-amine (SeGalNAc and SeGluNAc, respectively). Their chromatographic separation was achieved by using a cation exchange pre-column coupled in-series with a reversed-phase high-performance liquid chromatography column, along with an isocratic mobile phase. Online detection was performed using ES-MS/MS in selective reaction monitoring mode. SeGalNAc was detected as the major human urinary metabolite of selenium in the samples analysed, whereas TMSe+ was detected in the urine of one volunteer before and after receiving a selenium supplement. SeMet was not detected as a urine excretory metabolite in this study. Spiking experiments performed with the urine samples revealed significant signal suppression caused by coeluting matrix constituents. To overcome such interferences, isotopically labelled 13CD382SeGalNAc was used as an internal standard, whereas in the absence of an isotopically labelled internal standard for TMSe+, the standard addition method was applied. Quality control for the accurate quantitation of TMSe+ and SeGalNAc was carried out by analysing spiked human urine samples with appropriate selenium standards over a concentration range of 10–50 μg Se L−1. The method has achieved a limit of detection in the presence of urine matrix comparable to that of HPLC-inductively coupled plasma-mass spectrometry for the four selenium species: 1.0 μg Se L−1 for TMSe+, 5.6 μg Se L−1 for SeMet, and 0.1 μg Se L−1 for both SeGalNAc and SeGluNAc.  相似文献   

9.
10.
Metallo-beta-lactamases (MBLs) are targets for medicinal chemistry as they mediate bacterial resistance to beta-lactam antibiotics. Electrospray-ionization mass spectrometry (ESI-MS) was used to study the inhibition by a set of mercaptocarboxylates of two representative MBLs with different optimal metal stoichiometries for catalysis. BcII is a dizinc MBL (Class B1), whilst the CphA MBL (Class B2) exhibits highest activity with a single zinc ion in the active site. Experimental parameters for the detection of the metallo-enzyme and the metallo-enzyme-inhibitor complexes were evaluated and optimized. Following investigations on the stoichiometry of metal binding, the affinity of the inhibitors was investigated by measuring the relative abundance of the complex compared to the metalloprotein. The results for the BcII enzyme were in general agreement with solution assays and demonstrated that the inhibitors bind to the dizinc form of the BcII enzyme. The results for the CphA(ZnII) complex unexpectedly revealed an increased affinity for the binding of a second metal ion in the presence of thiomandelic acid. The results demonstrate that direct ESI-MS analysis of enzyme:inhibitor complexes is a viable method for screening inhibitors and for the rapid assay of the enzyme:metal:inhibitor ratios.  相似文献   

11.
Four different organic solvents: dimethylformamide, 1,4-dioxane, n-propanol and ethanol were evaluated as alternative organic modifiers to acetonitrile for liquid chromatography (LC) separations. The aim was to establish common sets of chromatographic conditions that could be applied for LC hyphenation to inductively coupled plasma mass spectrometry (ICPMS) as well as to electrospray ionization MS (ESIMS). The approach was to evaluate candidate solvents that, compared to acetonitrile, potentially could give improved analytical performance (low solvent vapor loading, maximized analyte sensitivity and minimized carbon depositions on instrumental parts) in ICPMS analysis while retaining chromatographic and ESIMS performances. The study showed that dimethylformamide, 1,4-dioxane, n-propanol and ethanol all can be advantageous chromatographic modifiers for LC–ICPMS analysis, giving superior performance compared to acetonitrile. For the combined use of LC–ICPMS and LC–ESIMS with a common set of chromatographic conditions, n-propanol gave the best overall performance. The 195Pt+ signal in ICPMS was continuously monitored during a 0–60% organic solvent gradient and at 25% of organic modifier, 100% of the signal obtained at the gradient start was preserved for n-propanol compared to only 35% of the signal when using acetonitrile. Platinum detection limits were 5–8 times lower using n-propanol compared with acetonitrile. Signal-to-noise ratio in continuous ESIMS signal measurements was 100, 90 and 110 for a 100 μg/ml solution of leucine–enkephaline using acetonitrile, ethanol and n-propanol, respectively. Chromatographic efficiency in reversed phase separations was preserved for n-propanol compared to acetonitrile for the analysis of the whole protein cytochrome C and the peptide bacitracin on a column with particle and pore sizes of 5 μm and 300 Å, but slightly deteriorated for the separation of the peptides leucine–enkephaline and bacitracin on a 3 μm and 90 Å column as the peak width at half height for both peptides increased by a factor of two. The performance on the smaller dimensioned column could however be improved by running the separations at 40 °C.  相似文献   

12.
It appears to be a general belief that stable isotopically labeled (SIL) internal standards yield better assay performance results for quantitative bioanalytical liquid chromatography/mass spectrometry (LC/MS) assays than does any other internal standard. In this article we describe our experiences with structural analogues and SIL internal standards and their merits and demerits. SIL internal standards are the first choice, but deuterium-labeled compounds may demonstrate unexpected behavior, such as different retention times or recoveries, than the analyte. In addition, a SIL internal standard with identical chemical properties as the analyte may cover up assay problems with stability, recovery, and ion suppression. Since SIL internal standards are not always available or are very expensive, structural analogues can be used, however, with consideration of several issues, which are usually displayed during method validation.  相似文献   

13.
A simple, fast and sensitive liquid chromatography–electrospray tandem mass spectrometry method was established for trace levels of nine haloacetic acids (HAAs) in drinking water. Water samples were removed of residual chlorine by adding l-ascorbic acid, and directly injected after filtered by 0.22 μm membrane. Nine HAAs were separated by liquid chromatography in 7.5 min, and the limits of detection were generally between 0.16 and 0.99 μg/L except for chlorodibromoacetic acid (1.44 μg/L) and tribromoacetic acid (8.87 μg/L). The mean recoveries of nine target compounds in spiked drinking water samples were 80.1–108%, and no apparent signal suppression was observed. Finally, this method was applied to determine HAAs in the tap water samples collected from five waterworks in Shandong, China. Nine HAAs except for monochloroacetic acid, monobromoacetic acid, dibromochloroacetic acid and tribromoacetic acid were detected, and the total concentrations were 7.79–36.5 μg/L. The determination results well met the first stage of the Disinfectants/Disinfection By-Products (D/DBP) Rules established by U.S.EPA and Guidelines for Drinking-water Quality of WHO.  相似文献   

14.
Oxaliplatin is an important anti-cancer drug that has been approved for the treatment of colorectal cancer. It is known that oxaliplatin, like other Pt-based drugs, interacts with DNA to form cytotoxic Pt-DNA adducts that disrupt important biological processes such as DNA replication and protein synthesis. Linear ion trap electrospray ionisation mass spectrometry (ESI-MS) was employed to study the interaction of oxaliplatin with DNA nucleobases. It was shown that oxaliplatin formed adducts with all four DNA nucleobases when present individually and in combination in solution. Multiple-stage tandem mass spectrometry (MSn) enabled the fragmentation pathways of each adduct to be established. In addition, proposed structures for each product ion were obtained from the MS data. When all four bases were present together with the drug at near-equal molar concentrations, adducts containing predominantly adenine and guanine were formed, confirming that the drug preferentially binds to these nucleobases. A large molar excess of drug was required to ensure the formation of cytosine and thymine adducts in the presence of adenine and guanine. Even with a large excess of oxaliplatin, only mono-adducts of these nucleobases were observed when all four nucleobases were present. Figure Schematic of a linear ion trap mass spectrometer being used to isolate the diadduct of guanine with oxaliplatin showing the characteristic isotope pattern due to 194Pt, 195Pt and 196Pt.  相似文献   

15.
Electrospray ionization (ESI) is a soft ionization technique that is able to transfer intact ions, as well as solution phase non-covalent complexes into the gas phase. With small molecules that have a high tendency to form hydrogen bonds, the observation of non-covalent complexes by ESI-MS can be the result of a non-specific interaction, due to the nature of the electrospray process. Special precautions and additional steps should be performed to identify the origin of the complexes observed with ESI-MS, and we have utilized solution phase hydrogen/deuterium (H/D) exchange as a method to determine the specificity of the complexes. By comparing the average number of exchanges for the monomer subunits to the average number of exchanges for the complex, one can distinguish if a specific complex is formed in solution. In this paper we have investigated non-covalent complexes of some common chemotherapy agents: paclitaxel, doxorubicin, and etoposide by ESI-MS. By using the solution phase H/D exchange, we were able to identify several specific drug-drug complexes. Thus, solution phase H/D exchange combined with ESI-MS provides for a convenient method in ascertaining the specificity of non-covalent complexes as being formed in solution or in vacuo.  相似文献   

16.
Aminoguanidine possesses extensive pharmacological properties. This drug is recognized as a powerful α-dicarbonyl scavenger. In order to better elucidate the reactivity of aminoguanidine with α-dicarbonyls, aminoguanidine was reacted with several aldehydic and diketonic α-dicarbonyls. Electrospray ionization mass spectrometry is a suitable technique to study chemical and biochemical processes, and was selected for the purpose. In aminoguanidine reactions, triazines were detected and, other compounds that have never been reported before were identified. Triazine precursor forms were detected, namely tetrahydrotriazines and singly dehydrated tetrahydrotriazines. Moreover, species with bicyclic ring structures, and dehydrated forms, were also identified in aminoguanidine reactions. These species appear to result from tetrahydrotriazines and triazines reactions with one dicarbonyl molecule. Experiments revealed that these bicyclic species, in particular the ones resulting from triazines reactivity, could exist in solution, since they were both identified in the reactions of aminoguanidine and of a selected triazine with the dicarbonyls studied. The results obtained, regarding aminoguanidine/triazines reactivities, appear to support the capability of triazines to condensate and form polycyclic ring structures, and also to support literature mechanistic data for dihydroimidazotriazines formation via dihydroxyimidazolidine-triazines. The data obtained in this study may prove to be valuable to complement solution information, concerning the reactivity of amines with α-dicarbonyls, in particular.  相似文献   

17.
Salinomycin is a polyether ionophore antibiotic that is widely used in poultry and livestock. Exposure of humans to salinomycin via inhalation or ingestion can cause severe toxicity. The aim of the present work was to develop a simple and sensitive liquid chromatography–tandem mass spectrometry (LC-MS/MS) method for the rapid identification and quantification of salinomycin in human plasma. After removing protein using methanol, plasma samples were eluted from a Waters Xterra ® MS C18 column with an isocratic mobile phase. Detection and quantification of the drug were performed with a triple-quadruple mass spectrometer by monitoring for two specific transitions in the electrospray, positive-ion, multiple-reaction monitoring mode. Assay validation showed good linearity (r 2?=?0.998). The detection and quantification limits of the method were 0.6 and 16 pg/mL, respectively. The inter- and intraday coefficients of variation for the assay were both <15%. Twelve authentic plasma samples from intoxicated patients were analyzed using this method. Salinomycin was detected in six samples, at concentrations of between 0.6 and 46.5 pg/mL. The described assay method allows the sensitive and rapid identification and quantification of salinomycin in human plasma, and thus provides a valuable tool for the specific diagnosis of salinomycin intoxication in clinical and emergency rescue practice.  相似文献   

18.
One important feature in the gas phase chemistry of surfactants is to ascertain whether their aggregates produced by electrospray ionization reflect those formed in the starting solution. With this aim, we have performed ESI-MS, ESI-MS/MS and ER-MS spectra of bis(2-ethylhexyl)sulfosuccinate (AOTNa) solutions in different solvents, i.e. water, water/methanol, methanol and n-hexane. The results clearly indicate that, notwithstanding the strongly different aggregation state in solution (direct micelles in water and in water/methanol, molecular dispersion in methanol and reverse micelles in n-hexane) and marked effects of the solvent polarity on the total ionic current, the surfactant aggregates in gas phase show identical structural features. Analogous conclusions can be drawn analyzing the infrared multiple photon dissociation (IRMPD) spectra of AOTNa solutions in water/methanol and n-hexane. Moreover, according to the idea that gas phase can be considered an apolar environment par excellence, data consistently suggest a reverse micelle-like aggregation. Some peculiarities of the mechanisms leading to aggregate formation through electrospray ionization of surfactant solutions in solvent media with different polarity have been also discussed.  相似文献   

19.
Using direct infusion electrospray ionization mass and tandem mass spectrometric experiments [ESI-MS(/MS)], we have performed on-line monitoring of some reactions used to form Tr?ger's bases. Key intermediates, either as cationic species or as protonated forms of neutral species, have been intercepted and characterized. The role of urotropine as the methylene source in these reactions has also been accessed. Reaction pathways shown by ESI-MS(/MS) have been probed by gas-phase ion/molecule reactions, and an expanded mechanism for Tr?ger's base formation based on the mass spectrometric data has been elaborated.  相似文献   

20.
An ultra performance liquid chromatography–electrospray ionization-tandem mass spectrometry (UPLC–MS/MS) method was developed for the analysis of steroids and their glucuronides in urine samples. The method provides high sensitivity and fast analysis, as both steroids and their glucuronides can be analyzed directly without hydrolysis or complex sample preparation. The method was applied in profiling of targeted and nontargeted steroids and steroid glucuronides during pregnancy. The concentrations of 11 of 27 targeted steroids and steroid glucuronides and the concentrations of 25 nontargeted steroid glucuronides increased about 10–400 fold during the pregnancy. The concentrations of most of these 36 compounds began to increase in the first days of the pregnancy, increased gradually during the pregnancy, achieved a maximum in late pregnancy, and decreased sharply after delivery. Exceptionally, the concentrations of allopregnanolone and 17-hydroxypregnenolone started to increase later than those of the other steroids. Moreover, the concentrations of E2 glucuronides began to decrease one week before the delivery, in contrast to most of the steroids and steroid glucuronides, whose concentrations dropped sharply during the delivery. Concentrations of 34 compounds decreased noticeably when the subject was on sick leave owing a series of painful contractions. The results suggest that steroids and especially steroid glucuronides may provide a valuable diagnostic tool to follow the course of pregnancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号