首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A new method for extraction and analysis of ethanol and methanol in human whole blood, urine and saliva samples based on headspace solid phase microextraction (SPME) using silver sulfide (Ag(2)S) and polyvinyl chloride (PVC) coated on silver wire is described. Unlike commercial fibers, which are coated on fused silica, the proposed fiber has a metallic base to which the coating adheres very strongly. Due to metallic base, this fiber is very durable and is thermally stable up to 250 degrees C. After optimization of coating composition and microextraction conditions, the fiber was used for sampling of methanol and ethanol from human body fluids prior to capillary gas chromatographic analysis. The high recovery (>94%), low detection limits (5.6 mg/L for ethanol and 12.8 mg/L for methanol) and excellent linearity (>0.9900) of calibration graphs made the proposed method suitable for this purpose.  相似文献   

2.
A new method for extraction and analysis of acetone in human urine based on headspace solid phase microextraction using a mixture of activated carbon and zeolite as sorbents in a PVC matrix coated on a silver wire and its application to the determination of ketone bodies is described. Unlike commercial fibers, which are coated on fused silica, the coating adheres strongly to the silver wire and is thermally stable up to 250 °C. After optimization of coating composition and microextraction conditions the fiber was used for the analysis of acetone in human urine.  相似文献   

3.
This paper reports on a new strategy for coating fused silica capillaries based on the ionic adsorption of acid treated single-walled carbon nanotubes (SWCNTs) on a poly(diallydimethylammonium chloride)-modified fused silica surface. The coated capillaries were used to demonstrate their performance for baseline separation of a mixture of seven nitrogen-containing aromatic compounds compared to capillary zone electrophoresis. This combined layer formed a coating material that could be useful for improvement of the selectivity of the solutes in an electrical field. We reasoned that the interaction of the solutes and the modified capillary wall occurred mainly via ionic interactions with the charged moieties of CNTs. The single-walled CNT modified capillaries were very stable and could be used for over 200 repeated analyses without compromising its analytical performance.  相似文献   

4.
The stability of capillaries coated with highly charged polyelectrolytes under various analytical conditions was studied, as well as their performance for the analysis of proteins by Capillary Electrophoreis (CE) over a wide range of pH (2.5-9.3). In this study, fused silica capillaries were modified either with a poly(diallyldimethylammonium) chloride (PDADMAC) monolayer or PDADMAC/poly(sodium 4-styrenesulfonate) (PSS) multilayer coatings, using optimal coating conditions previously determined. Results show that the coated capillaries are remarkably stable and efficient to limit protein adsorption under a variety of extreme electrophoretic conditions even in the absence of the coating agent in the background electrolyte which is exceptional for non-covalent coatings. Monolayer coated capillaries were demonstrated for the first time to be stable to acidic rinses and to organic solvents which proves that the stability of the capillaries is highly dependent on the coating procedure used. In addition, PDADMAC/PSS multilayer coatings were found to be stable to alkaline treatments. PDADMAC/PSS coated capillaries gave excellent performances for the analysis of proteins covering a large range of pI (4-11) and of molecular weight (14-65 kDa) over a wide pH range (i.e. 2.5-9.3). Even at high pH 9.3, protein analysis was possible with very good repeatabilities (RSD(tm)<1% and RSD(CPA)<2.6% (n ≥ 8)) and high peak efficiencies in the order of 700,000.  相似文献   

5.
The preparation and applicability of solid phase microextraction (SPME) fibers coated with a sol-gel organically modified silica based on 3-aminopropyltrimethoxysilane and polydimethylsiloxane (APTMS/PDMS) are described here. Micrographs of the coated fibers revealed a rugous surface; the thickness of the coating was estimated to be less than 30 microm. The APTMS/PDMS fibers were tested with synthetic samples and compared to commercial fibers for headspace SPME analysis of beer. Extraction and desorption using the APTMS/PDMS fibers were faster, which is typical for sol-gel SPME fibers. For polar and semi-polar compounds on beer headspace, the extraction efficiencies of the APTMS/PDMS fiber were superior to those of conventional fibers. The APTMS/PDMS fiber was found to be capable of extracting a broad range of analytes, including highly polar acidic species such as organic acids.  相似文献   

6.
We attempt to introduce animal bone waste as a coating material with an organic−inorganic structure for the fabrication of a coiled solid‐phase microextraction fiber for the first time. The coiled fiber was simply prepared with the use of copper wire and coated with bone waste suspension through the dip‐coating method. The bone waste coating was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray diffraction analysis. It was applied as new type of solid‐phase microextraction fiber for preconcentration of polycyclic aromatic hydrocarbons before determination by high‐performance liquid chromatography with UV detection. A wide linear range 0.01–99.0 μg/L and limits of detection in the range 3.0–11.1 ng/L were obtained at optimized conditions. The bone waste coated coiled solid‐phase microextraction fiber has promise in sample preparation techniques because it is cost effective, available, stable in aqueous and organic solutions, environmentally friendly, and easy to fabricate and operate.  相似文献   

7.
Cardiovascular metallic stents established in clinical application are typically coated by a thin polymeric layer on the stent struts to improve hemocompatibility, whereby often a drug is added to the coating to inhibit neointimal hyperplasia. Besides such thin film coatings recently nano/microfiber coated stents are investigated, whereby the fibrous coating was applied circumferential on stents. Here, we explored whether a thin fibrous encasement of metallic stents with preferentially longitudinal aligned fibers and different local fiber densities can be achieved by electrospinning. An elastic degradable copolyetheresterurethane, which is reported to selectively enhance the adhesion of endothelial cells, while simultaneously rejecting smooth muscle cells, was utilized for stent coating. The fibrous stent encasements were microscopically assessed regarding their single fiber diameters, fiber covered area and fiber alignment at three characteristic stent regions before and after stent expansion. Stent coatings with thicknesses in the range from 30 to 50 µm were achieved via electrospinning with 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFP)‐based polymer solution, while a mixture of HFP and formic acid as solvent resulted in encasements with a thickness below 5 µm comprising submicron sized single fibers. All polymeric encasements were mechanically stable during expansion, whereby the fibers deposited on the struts remained their position. The observed changes in fiber density and diameter indicated diverse local deformation mechanisms of the microfibers at the different regions between the struts. Based on these results it can be anticipated that the presented fibrous encasement of stents might be a promising alternative to stents with polymeric strut coatings releasing anti‐proliferative drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The graphene oxide (GO) is carbon based material that has high surface area, high adsorption ability, and is stable at high temperature. In this work, the GO phase was prepared and used for gas chromatographic separation. GO nanosheets were covalently bonded onto the inner surface of fused silica capillary column using 3-aminopropyldiethoxymethyl silane as cross-linking agent. The prepared GO nanosheets were characterized with TEM and the GO coating was characterized with SEM. As a high performance stationary phase, GO provides not only a high surface area to increase the phase ratio but also rich functional groups for the formation of hydrophobicity, hydrogen bonding, and π–π electrostatic stacking interactions with volatile aromatic or unsaturated organic compounds. Thus, mixtures of a wide range of organic compounds including alcohols and aromatic compounds were well separated and an efficiency of 1990 theoretical plates per meter for anisole was obtained on GO coated 1.0 m × 200 μm i.d. fused silica capillary column. The experimental results demonstrate that GO coated capillary columns are promising for gas chromatographic separation.  相似文献   

9.
This paper demonstrates the use of surface plasmon resonance to study adsorption (either reversible or irreversible) of detergents on PDMS surfaces in real time. The surface plasmon resonance measurements can directly provide information about the adsorption/desorption processes of detergents on the surface revealing the durability of the adsorbed layer and the anticipated degree of the EOF. Hydroxypropyl methylcellulose very strongly adsorbs onto PDMS and can be considered both a semipermanent layer and stable semipermanent coating. Adsorbed SDS or CTAB layers were stable for several minutes upon rinsing the surface with solution not containing the detergent. It was shown that SDS coated onto PDMS in microchips has the potential to afford similar separations in PDMS as found in conventional fused silica capillaries.  相似文献   

10.
A novel carbon nanotube (CNT)-coated solid-phase microextraction fiber was prepared based on sol–gel technique. Commonly used fragile fused silica fiber was replaced with stainless steel wire, which made the fiber unbreakable. An approach was also proposed for batch producing, and good reproducibilities for fiber to fiber and between fibers were achieved. Experiments showed that the sol–gel-CNT fiber exhibited high thermal stability to resist 350 °C and excellent solvent durability in methanol and acetonitrile. Compared to commercial polydimethylsiloxane (PDMS) fiber, the sol–gel-CNT fiber represented significantly improved extraction efficiencies for both polar (phenols) and non-polar (benzene, toluene, ethylbenzene, and o-xylene) compounds. Meanwhile, no replacement effect, low carry-over and wide linear range demonstrated that the newly prepared sol–gel-CNT coating has liquid properties, which allow a relatively easy quantification procedure. Moreover, the characterization of the sol–gel-CNT coating was also evaluated with McReynold probe solutes. The results showed that the coating has better affinity for all the five types of solutes compared to commercial 7 μm PDMS fiber, which suggested that the coating has the potential to be developed as GC stationary phase.  相似文献   

11.
A new phenyl-cyanopropyl polymethylsiloxane stationary phase, DB-1301, which can be crosslinked and bonded to the fused silica surface, has been synthesized. The phase composition was optimized for the separation of 18 volatile priority pollutants, selected from the so-called “purgables” list because of problems associated with their resolution. The composition of the stationary phase was based on theoretical considerations of binary phase mixtures and window diagram prediction. Columns coated with this stationary phase are compatible with atom selective detectors, such as the electron capture detector. A mixture of 18 volatile priority pollutants and a mixture of chlorinated pesticides were used as test probes on a prototype 30 m × 0.32 mm fused silica column, containing a 1.0 μm film of DB-1301.  相似文献   

12.
The performance of dynamic double‐coated fused‐silica capillaries with Polybrene and chondroitin sulfate A has been compared with uncoated fused‐silica capillaries for the determination of recombinant human growth factor (somatropin) charge variants. The separations were carried out under the same electrophoretic conditions as described in the European Pharmacopoeia, i.e. at pH 6.0 and 30°C. The coating significantly reduced the interactions between the proteins and the surface of the fused‐silica capillary. The first five separations performed in a new bare fused‐silica capillary were discarded because of very poor separation performance as a result of protein–surface interactions. There was an approximate twofold increase in the interday migration time precision (%RSD ≤ 6.5%) in the double‐coated capillaries. The method was successfully transferred to a multiple CZE mode where two samples were analyzed in a single electrophoretic run. The average purity of somatropin certified reference standard was 98.0% (%RSD ≤ 0.3%) determined by using uncoated and coated capillaries.  相似文献   

13.
The electrophoretic behaviour of the highly basic protein thaumatin was explored in strongly acid (pH 2) and mildly acid (pH 4.5) separation systems using both bare and coated fused silica capillaries. The separation selectivity for thaumatin I, thaumatin II, and for other sample constituents was insufficient for their baseline separation at pH 2 in an uncoated capillary because the separation efficiency was markedly lower than is common in the electrophoretic separations of proteins. A separation selectivity higher by up to one order of magnitude has been reached at pH 4.5. A pronounced asymmetry of zones, which impaired resolution at this pH, was effectively suppressed by coating of the capillary wall with a polymer. In fact, adsorption on the capillary coating always plays a contributory role whenever a good separation of thaumatin constituents is attained. This indicates that electrochromatographic separation systems based on capillaries coated with the layer of either cationic or hydrophilic uncharged polymer hold promise for the development of methods for thaumatin analysis.  相似文献   

14.
Huang J  Hu Y  Hu Y  Li G 《Talanta》2011,83(5):1721-1729
In this paper, a novel metal complex imprinted polymer (CIP) coated solid-phase microextraction (SPME) fiber was prepared which could recognize the complex template [Cu(OAc)2(2,2′-dipyridine)] in aqueous medium. The saturating adsorption capacity of CIP-coated fiber was 2.2 and 2.6 times greater than those of molecularly imprinted polymer (MIP) coated fiber and nonimprinted polymer (NIP) coated fiber, respectively. Extraction conditions that influenced the recognition performance of CIP-coated fiber were investigated including pH, extraction solvent, metal ion species, etc. The ligand selectivity was also evaluated and discussed. The results demonstrated that CIP-coated fiber had better binding affinity for 2,2′-dipyridine compared to its structure analogues. The recognition ability of CIP coating was stable and effective in aqueous medium while MIP coating showed weak imprinting effect due to disturbance from protic solvent. 2,2′-dipyridine extracted by CIP-coated fiber using HPLC/UV detection resulted in a linear range of 10-200 μg/L with a detection limit of 2.0 μg/L. The proposed method was successfully applied to the analysis of 2,2′-dipyridine in spiked tap water, laboratory wastewater and human urine samples with recoveries 80.3-103.3% and RSDs 5.5-8.9%.  相似文献   

15.
A novel in‐tube solid‐phase microextraction method based on a graphene oxide coated column was developed for the determination of triazines in waters. This column was prepared by the covalent modification of monolayer graphene oxide sheets onto the inner wall of a fused‐silica capillary. Scanning electron microscopy showed that the thickness of the graphene oxide coating was ~30 nm, with a porous, wrinkled membrane‐like structure. Its performance was evaluated through the extraction of triazines in water. Results showed that the coating was stable for at least 100 replicate extractions, and variety of multi‐columns was less than 10%. Flow rate, loading volume, pH, and ionic strength of samples played an important effect on the extraction. The high extraction efficiency was mainly attributed to π–π stacking and hydrogen bonding interactions. The in‐tube solid‐phase microextraction was used in the determination of triazines with liquid chromatography and tandem mass spectrometry, and the detection limits were 0.0005–0.005 μg/L for five triazine compounds. Further, the method was applied to the analysis of triazine herbicides in real samples including tap water, sea water, and river water, and the recoveries were 82.8–112.0, 85.4–110.5, and 81.6–105.9%, respectively, with RSDs of 2.7–7.1%.  相似文献   

16.
Smith DR  Moy MA  Dolan AR  Wood TD 《The Analyst》2006,131(4):547-555
As miniaturization of electrospray continues to become more prevalent in the mass spectrometry arsenal, numerous types of conductive coatings have been developed with miniaturized electrospray emitters. Different conductive coatings have different properties that may lead to differences in analytical performance. This paper investigates and compares the analytical properties of a series of applied conductive coatings for low-flow electrospray ionization developed in this laboratory vs. commercially-available types. Evaporated graphite is thoroughly compared with commercially available polyaniline (PANI) coated emitters and metal coated emitters. Each set of emitters was investigated to determine various performance characteristics, including susceptibility to electrical discharge in both positive and negative ionization modes, as well as emitter reproducibility and generation of a standard curve to determine each emitter coating's limit of detection and limit of quantitation. Furthermore, evaporated graphite and polyaniline coated fused silica capillaries were investigated to determine which coating is more stable over long-term analyses and during electrical discharge.  相似文献   

17.
Solid‐phase microextraction (SPME) has been directly coupled to an ion‐trap mass spectrometer (MS) for the determination of the model compound lidocaine in urine, hereby applying MS/MS [fragmentation of [M + H]+ (m/z 235) to a fragment with m/z 86]. The throughput of samples has been increased using non‐equilibrium SPME with polydimethylsiloxane (PDMS) fibers. The effect of temperature on the sorption and the desorption was studied. Elevated temperatures during sorption (65°C) and desorption (55°C) had a considerable influence on the speed of the extraction. The desorption was carried out with a home‐made desorption chamber allowing thermostating. Only 1 min sorption and 1 min desorption were performed, after which MS detection took place, resulting in a total analysis time of 3 min. Detection limits below 1 ng/mL could be obtained despite yields of only 2.1 and 1.5% for a 100‐ and a 30‐μm PDMS‐coated fiber, respectively. Furthermore, the determination of lidocaine in urine had acceptable reproducibilities, i.e., relative standard deviations (RSDs) below 10%. A limit of quantitation (RSD < 15%) of about 1 ng/mL was obtained. No extra wash step of the extraction fiber was required after desorption if a 30‐μm coating was used, whereas not all the analyte was desorbed from the 100‐μm coating in a single desorption. Therefore, the SPME‐MS/MS system with a 30‐μm PDMS‐coated fiber for rapid non‐equilibrium SPME at elevated temperatures has interesting potential for high‐throughput analysis of biological samples.  相似文献   

18.
The effect of a pretreatment step on the polarity of fused silica capillary tubing prior to coating was evaluated. Columns were tested prior to and after coating with a 50% phenl stationary phase, and the chromatographic findings were compared. The results confirmed that the polarity of the fused silica substrate affects the inertness and reproducibility of the final coated columns.  相似文献   

19.
Stir‐bar sorptive extraction is based on the partitioning of target analytes between the sample (mostly aqueous‐based liquid samples) and a stationary phase‐coated magnetic stir bar. Until now, only PDMS‐coated stir bars are commercially available, restricting the range of applications to the non‐selective extraction of hydrophobic compounds due to the apolar character of PDMS. In this work, a novel stir bar coated with molecularly imprinted polymer as selective extraction phase for sorptive extraction of thiabendazole (TBZ) was developed. Two different procedures, based on physical or chemical coating, were assessed for the preparation of molecularly imprinted stir bars. Under optimum conditions, recoveries achieved both in imprinted and non‐imprinted polymer stir bars obtained by physical coating were very low, whereas TBZ was favourably retained by imprinted over non‐imprinted polymer stir bars obtained by chemical coating and thus the latter approach was used in further studies. Different parameters affecting both stir‐bars preparation (i.e. cross‐linker, porogen, polymerization time) and the subsequent selective extraction of TBZ (i.e. washing, loading and elution solvents, extraction time) were properly optimized. The molecularly imprinted coated stir bars were applied to the extraction of TBZ from citrus samples (orange, lemon and citrus juices) allowing its final determination at concentrations levels according to current regulations.  相似文献   

20.
固相微萃取中高分子涂层的研究   总被引:34,自引:0,他引:34  
张道宁  吴采樱  艾飞 《色谱》1999,17(1):10-13
聚甲基乙烯基硅氧烷首次被用作固相微萃取(SPME)装置的固相涂层,通过顶空固相微萃取气相色谱分析(HS-SPME-GC)对使用聚甲基乙烯基硅氧烷固相涂层的SPME装置进行了评价。对其使用厚度、温度及选择性进行了较深入的研究,找到了它的最佳使用条件和适用范围,并与商品化的SPME涂层作了比较。对HS-SPME-GC和HS-GC两种方法也作了比较,指出两者的适用范围不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号