首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nature of the pseudogap state and its relation to the d-wave superconductivity in high-T c superconductors is still an open issue. The vortex-like excitations detected by the Nernst effect measurements exist in a certain temperature range above superconducting transition temperature T c, which strongly support that the pseudogap phase is characterized by finite pairing amplitude with strong phase fluctuations and imply that the phase transition at T c is driven by the loss of long-range phase coherence. We first briefly introduce the electronic phase diagram and pseudogap state of high-T c superconductors, and then review the results of Nernst effect for different high-T c superconductors. Related theoretical models are also discussed.  相似文献   

2.
The magnetic-field-induced valence transition in rare-earth systems has been investigated using the periodic Anderson model supplemented by the Falicov-Kimball term. This model has been solved by first decoupling the Falicov-Kimball term as proposed by Khomskii and Koharjan and then taking the limit of infinite intra-site Coulomb repulsion. The valence transition both in the absence and in the presence of magnetic field as a function of temperature is studied. It has been found that the system makes transition from non-magnetic to magnetic state when the magnetic field increases beyond a critical value H c. The phase boundary defined in terms of reduced field H c(T)/H c(0) and reduced temperature T/T v (T v being the valence transition temperature in the absence of field) is almost independent of the position of the localized level. The results are in qualitative agreement with experimental observations in Yb- and Eu-compounds.  相似文献   

3.
The exact calculation of the reduced BCS model quantum partition function (QPF) in the thermodynamic limit is carried out by the path integration method. The expression for the QPF and the phase transition temperatureT c in the regular phase coincide with the results of Bogolyubov. In the nonregular phase a temperature singularity appears in the expression for the QPF: the QPF diverges in the region of temperaturesT c which are smaller than some critical temperatureT c * , and it turns out that in all casesT c * > T c and the differenceT c *T c is not small. The interpretation of the temperatureT c * is given.  相似文献   

4.
The low-temperature thermal and magnetic-resonance properties of a monoclinic KDy(WO4)2 single crystal are investigated. It is established that a structural phase transition takes place at T c=6.38 K. The field dependence of the critical temperature is determined for a magnetic field oriented along the crystallographic a and c axes. The initial part of the H-T phase diagram is plotted for Ha. The prominent features of the structural phase transition are typical of a second-order Jahn-Teller transition, which is not accompanied by any change in the symmetry of the crystal lattice in the low-temperature phase. The behavior of C(T) in a magnetic field shows that the transition goes to an antiferrodistortion phase. An anomalous increase in the relaxation time (by almost an order of magnitude) following a thermal pulse is observed at T>T c(H), owing to the structural instability of the lattice. A theoretical model is proposed for the structural phase transition in a magnetic field, and the magnetic-field dependence of T c is investigated for various directions of the field. Fiz. Tverd. Tela (St. Petersburg) 40, 750–758 (April 1998)  相似文献   

5.
Variations in the temperature behavior of resistivity, ρ(T), in the ab plane of the anisotropic single-crystal high-T c superconductor BiSrCuO (2201 phase) have been observed at the insulator-metal (IM) transition. At low temperatures, as one approaches the transition, the Mott relation for two dimensions, ln ρT −1/3, changes to ln ρT −1/2, which corresponds to hopping conduction with a Coulomb gap in the density of states. Negative temperature slopes were revealed in the samples near the transition. Estimates suggest that superconductivity in these samples sets in from the Anderson insulator state. The behavior of the width of the superconducting transition and of the temperature of its onset, T con, at the IM transition has been studied from measurements of the ac magnetic susceptibility. It is shown that in the vicinity of the IM transition the superconducting transition becomes broader, and the onset of the transition T con shifts toward higher temperatures. This behavior is attributed to nonuniform superconductivity resulting from formation in the crystal of superconducting droplets with different values of T c , which is caused by fluctuations in the local density of states due to the inherent disorder in the crystal. In these conditions, superconductivity has a percolation character. Fiz. Tverd. Tela (St. Petersburg) 40, 1190–1194 (July 1998)  相似文献   

6.
Dynamic mechanical spectroscopy and differential scanning calorimetry investigations of segmental dynamics are reported for net-poly(methyl methacrylate)-co-poly(n-butyl acrylate) copolymer networks. Three characteristic temperatures, namely, Vogel (T), glass transition (T g ), and crossover (T c ), were used to define cooperativity range and a new reduced temperature parameter (Solidness, S). The results showed that broadness of the α -dispersion (glass transition) and cooperativity length scale at the glass transition temperature decreased with increasing butyl acrylate content and T g -scaled temperature dependence of the relaxation time (fragility). However, the cooperativity range (T c –T), decreased with increasing fragility index. Furthermore, the solidness at T g (S(T g )) was nearly independent of chemical structure of the samples. Finally, a correlation was found between two measures of cooperativity length scale in the glass transition region, namely, average volume of cooperatively rearranging regions, V CRR , and the number of basic units in an act of rearrangement in the glass transition region, Z(T g ), determined from two completely independent experimental techniques.  相似文献   

7.
Thermodynamic properties of a Kerr nonlinear blackbody (KNB) are investigated. It is found that below a transition temperature T c , the free energy of a KNB radiation is larger than that in a normal blackbody. At the transition from KNB radiation state to a normal blackbody radiation state, the photon system undergoes a first-order phase transition. The thermodynamic system of an atom interacting with a KNB radiation bath is also investigated by using a thermodynamic perturbation theory. It is found that below a transition temperature T c , the increment of the free energy of the atom is larger than that in a normal blackbody. Above T c , the KNB becomes a normal blackbody, and the properties in a KNB turn to be the same as those in normal blackbody radiation.  相似文献   

8.
It is found that the bulk part ω of the magnetostriction near the Curie temperature T c in a La0.7Sr0.3MnO3 single crystal with the perovskite structure is negative and that the temperature dependence of |ω| has a maximum near T c . The quantity |ω| at the maximum increases rapidly with increasing magnetic field. The thermal expansion coefficient near T c increases with temperature much faster than linearly. The paramagnetic Curie temperature determined from the Curie-Weiss law, which the paramagnetic susceptibility of this crystal satifies, was found to be lower than T c . These anomalies and also the near-T c metal-insulator transition which is characteristic for this material are explained by the existence of a magnetically two-phase state consisting of a conducting ferromagnetic matrix containing antiferromagnetic insulating microregions occupying not more than 5% of the sample volume. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 6, 449–453 (25 March 1997)  相似文献   

9.
K Krishan  R V Nandedkar 《Pramana》1979,12(6):607-629
The evolution of defects in a material under irradiation is studied at low doses (∼5 dpa or less) using rate equations. It is shown that as a function of temperature at a critical valueT c a transition occurs in the behaviour of the solutions of the rate equations. BelowT c the voids show incubation effects. An expression is derived for the critical dislocation density at which the void growth starts. This is related to the trapped vacancy fraction ε in vacancy dislocation loops. AboveT c the incubation effects are shown to be related to the gas production rate which becomes the rate controlling parameter in determining the evolution of the defects. A gas-bubble to void transition occurs at a critical void radius and expressions are derived for the critical void size and dose at which the transition appears. It is shown that closely related to this is the incubation dose for interstitial loops. Finally, these features are corroborated by actual numerical integration of the rate equations.  相似文献   

10.
A magnetic phase transition in carbon-doped (0.1 and 0.7 at. %) Fe70Ni30 Invar alloys was investigated by the method of depolarization of a transmitted neutron beam and by small-angle scattering of polarized neutrons. It is shown that for both alloys, two characteristic length scales of magnetic correlations coexist above T c. Small-angle scattering by critical correlations with radius R c is described well by the Ornstein-Zernike (OZ) expression. The longer-scale (second) correlations, whose size can be estimated from depolarization data, are not described by the OZ expression, and hypothetically can be modeled by a squared OZ expression, which in coordinate space corresponds to the relation 〈M(r)M(0)〉∝exp(−r/R d), where R d is the correlation length of the second scale. The temperature dependence of the correlation radius R c was obtained: R c ∝ ((TT c)/Tc)ν , where ν≈2/3 is the critical exponent for ferromagnets, over a wide temperature range up to T c exp , at which the correlation radius becomes constant and equals its maximum value R c(T c)=R c max . The maximum correlation radius established (R c max =140 Å and 230 Å for the first and second alloys, respectively) characterizes the length-scale of the fluctuation for which the appearance of critical correlations first results in the formation of a ferromagnetic phase, and the phenomenon itself exhibits a “disruption” of the second-order phase transition at T=T c exp , as a result of which a first-order transition arises. Temperature hysteresis was also detected in the measured polarization of the transmitted beam and intensity of small-angle neutron scattering in the alloy above T c, confirming the character of this magnetic transition as a first-order transition close to a second-order transition. Zh. éksp. Teor. Fiz. 112, 2134–2155 (December 1997)  相似文献   

11.
The critical superconductivity field H c3 is measured on lead single crystals. It is shown that the temperature dependence of H c3/H c in the vicinity of superconducting transition temperature T c is essentially nonlinear. Relative changes in the value of H c3/H c reach approximately 30%, which cannot be described by the Ginzburg-Landau theory. The experimental temperature dependences lead to the conclusion that the surface superconducting transition temperature noticeably exceeds the superconducting transition temperature in the bulk of the semiconductor. The differences in the critical temperatures and in the Ginzburg-Landau parameters for lead are estimated.  相似文献   

12.
Phase transitions in solid solutions of strontium titanate with titanates of the divalent metals Pb, Ba, and Ca are considered. It is shown that the critical concentration x c in the well-known expression relating the transition temperature to the polar state in SrTiO3 with the concentration x of divalent metals, T c=A(xx c)1/2, is practically the same for all impurities. For large values of x, the ferroelectric transition temperature T c depends linearly on x. The volume and impurity contributions to the T c(x) relation are determined for this concentration range. Fiz. Tverd. Tela (St. Petersburg) 39, 1645–1651 (September 1997)  相似文献   

13.
Effects of non-magnetic randomness on the critical temperature T c and diamagnetism are studied in a class of quasi-one dimensional superconductors. The energy of Josephson-coupling between wires is considered to be random, which is typical for dirty organic superconductors. We show that this randomness destroys phase coherence between the wires and T c vanishes discontinuously when the randomness reaches a critical value. The parallel and transverse components of the penetration depth are found to diverge at different critical temperatures T c (1) and T c , which correspond to pair-breaking and phase-coherence breaking. The interplay between disorder and quantum phase fluctuations results in quantum critical behavior at T = 0, manifesting itself as a superconducting-normal metal phase transition of first-order at a critical disorder strength.  相似文献   

14.
Abstract

The temperature dependence of the linear birefringence (LB), Δn c , is measured in the range 5 K ? T ? 500 K on samples of KFeF4, which originate from hydrothermal, flux and Bridgman growth techniques. Pronounced anomalies are found at the orthorhombic-orthorhomic phase transition at T c ∽ 400 K. It is weakly discontinuous with a near-tricritical exponent β ∽ 0.2. Weak anomalies near T i T c + (25 … 40 K) seem to indicate a transition into an intermediate incommensurate phase. Its XY-model character is reflected by the critical LB exponent β = 0.8 ± 0.1. A smooth LB anomaly below 200 K is due to 2-dimensional ferromagnetic spin-order.  相似文献   

15.
Summary It is shown that the behaviour of the temperature dependence of the critical current in polycrystalline thin films of high-T c superconductors depends crucially on the assumption made concerning the nature of the intergranular material. The usual assumption of a superconductor-insulator-superconductor (=SIS) ?sandwich? between each grain leads to a crossover fromI c∼(1−T/T c) toI c∼(1−T/T c)3/2, for temperatures nearT c (whereI c is the critical current,T the absolute temperature, andT c the superconducting transition temperature). Instead, for a superconductor-normal metal-superconductor (=SNS) sandwich the dependenceI c∼(1−T/T c)2 is found for all temperatures. Consideration is given to the effect of self-magnetic field on the analysis. The comparison between expressions for continuous and granular systems is extended. Due to the relevance of its scientific content, this paper has been given priority by the Journal Direction.  相似文献   

16.
We calculate the quantum phase transition for a homogeneous Bose gas in the plane of s‐wave scattering length as and temperature T. This is done by improving a one‐loop result near the interaction‐free Bose‐Einstein critical temperature Tc(0) with the help of recent high‐loop results on the shift of the critical temperature due to a weak atomic repulsion based on variational perturbation theory. The quantum phase diagram shows a nose above Tc(0), so that we predict the existence of a reentrant transition above Tc(0), where an increasing repulsion leads to the formation of a condensate.  相似文献   

17.
The frequency distribution of the87Rb NMR 1/2–1/2 central transition is measured in a detailed manner as a function of the temperature and the crystal orientation in the normal (N), incommensurate (IC), and commensurate (C) phases of high quality single crystals of Rb2ZnCl4 (RZC). Special emphasis is laid upon the region around the lock-in transition atT c . While in the N and C phases discrete lines are observed, in the IC phase a continuous distribution of frequencies is detected. In a temperature interval not exceeding 15 K aboveT c some centers of intensity termed C lines can be observed in the frequency distribution. They reflect the fact that in the IC phase close toT c several nuclei feel a local surrounding very similar to that of the low temperature C phase. For the first time in the region aroundT c the influence could be studied which an electric field favouring the ferroelectric C phase has on the NMR spectra. The experimental results are related to the temperature and electric field dependence of the soliton density near the lock-in transition. A general definition of the soliton density is developed whose validity is not limited to the very narrow soliton limit. The meaning of this definition is also discussed in terms of well known phenomenological theories of the three phases of RZC. The experimental NMR data can be well described by this general definition.Dedicated to Prof. Dr. H.E. Müser on the occasion of his 60th birthday  相似文献   

18.
A method (laser raster microscopy with thermal excitation, LRMTE) for characterizing high-T c thin-film superconductors (HTSC) with microscopic resolution is described. By means of spatially resolved laser excitation and subsequent monitoring of the time dependence of the film resistivity at a base temperature near the transition temperature T c, spatial variations of the transition temperature (T c), of the temperature coefficient of the resistivity (dQ/dT), of the heat conductivity and heat capacity of the film and of the heat conductivity between film and substrate can be detected with high spatial resolution (15 m have been achieved so far).  相似文献   

19.
A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa2Cu3O6+x crystals in the range T c≲30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T≲13 K it decreased with increasing magnetic field. The transition point T c(B) was determined by analyzing the fluctuation conductivity. The curves of B c2(T) measured in the region T/T c≳0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T c. The only difference among the curves of B c2(T) for different crystal states is the scales of Tand B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov’s model of boson superconductivity. Zh. éksp. Teor. Fiz. 115, 268–284 (January 1999)  相似文献   

20.
The dependence of the temperature of the transition to the superconducting state T c on the pressure up to 60.8 GPa is measured for the TiV alloy. The dependence T c (P) is increasing except for an anomaly in the form of a local minimum near P = 10 GPa. At the maximum pressure of 60.8 GPa, the superconducting transition temperature T c reaches 18.2 K. The obtained curve T c (P) is compared with the known dependences for pure vanadium, for which T c (P) increases to 17.2 K at P = 120 GPa, and for pure niobium and the ZrNb alloy, for which the dependences T c (P) also have anomalies in the form of local maxima at pressures of 5–10 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号