首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 We examine the influence of the sample porosity on the X-ray emission from mesoporous alumina bombarded with kilovolt electrons. Experimental results show that there is a loss of X-rays (Al Kα and O Kα) from those samples when compared to a fully dense mono-crystalline alumina (sapphire), which depends on the X-ray line, the measurement time and the embedding medium. Both geometrical and charging effects may be responsibl e for this signal loss. Monte Carlo simulations of the X-ray intensity emitted from porous alumina, using different models to describe sample porosity, show that the geometrical effect of porosity itself cannot account for the X-ray loss. Charge trapping effect and/or its combination with porosity is therefore expected to be the major cause of the signal loss.  相似文献   

2.
 Monte Carlo simulations have been carried out for 2-methoxyethanol in an isothermal–isobaric ensemble (NPT) at 298.15 K and 1 atm pressure. The optimized potential for liquid simulation force field parameters has been used for modeling 2-methoxyethanol and the TIP4P model for water. Intramolecular rotations are described by an analytical potential function fitted to ab initio energies. It has been shown that the water molecules can form hydrogen bonds between adjacent O atoms of CH3OCH2CH2OH in aqueous media. The self-association of 2-methoxyethanol in aqueous media has been studied by statistical perturbation theory. Received: 9 October 2000 / Accepted: 5 January 2001 / Published online: 3 May 2001  相似文献   

3.
 The nature and importance of nonadditive three-body interactions in the (H2O)2HCl cluster have been studied by the supermolecule coupled-cluster method and by symmetry-adapted perturbation theory (SAPT). The convergence of the SAPT expansion was tested by comparison with the results obtained from the supermolecule coupled-cluster calculations including single, double, and noniterative triple excitations [CCSD(T)]. It is shown that the SAPT results reproduce the converged CCSD(T) results within 3% at worst. The SAPT method has been used to analyze the three-body interactions for various geometries of the (H2O)2HCl cluster. It is shown that the induction nonadditivity is dominant, but it is partly quenched by the first-order Heitler–London-type exchange and higher-order exchange–induction/deformation terms. This implies that the classical induction term alone is not a reliable approximation to the nonadditive energy and that it will be difficult to approximate the three-body potential for (H2O)2HCl by a simple analytical expression. The three-body energy represents as much as 21–27% of the pair CCSD(T) intermolecular energy. Received: 15 September 1999 / Accepted: 3 February 2000 / Published online: 2 May 2000  相似文献   

4.
 The influence of collector structure on interaction with metal cations was modelled by computational ab initio methods. The interaction energies were calculated between metal ions (Cu+, Cu2+, Zn2+ and Pb2+) and selected collector anions: ethyl xanthate, ethyl trithiocarbonate, dithiobutyric acid, ethyl dithiocarbamate, diethyl dithiocarbamate, diethylphosphinecarbodithioic acid and diethoxyphosphinecar bodithioic acid. The strongest interaction was found with diethyl dithiocarbamate. The results give qualitative information on the effect of the collector structure on the initial adsorption steps on sulphide mineral flotation. Received: 25 September / Accepted: 11 October 2001 / Published online: 22 March 2002  相似文献   

5.
张慧  薛英  谢代前  鄢国森 《化学学报》2005,63(9):791-796
采用从头算方法在MP2/6-31+G*水平上研究了2-羟基咪唑分子在孤立分子和一水合物的异构体的相对稳定性和可能的质子迁移反应, 分析了一个水分子的参与对2-羟基咪唑分子异构体的相对稳定性和质子迁移速率的影响, 采用Monte Carlo模拟方法研究了反应体系在水溶液中反应的溶剂化效应. 结果表明: 2-羟基咪唑分子的孤立分子和一水合物的最稳定异构体相同, 都为酮式. 直接质子迁移反应在水溶液中活化能垒有轻微增加, 但产物能量得到降低; 水助催化质子迁移反应在水溶液中的活化能垒和产物能量都得到明显降低. 综合气相和水相的计算结果, 2-羟基咪唑水助催化的质子迁移反应较易进行, 且在水溶液中进行容易, 可以很容易被实验观察到.  相似文献   

6.
 The structures and the conformational energies of nonprotonated, monoprotonated and diprotonated 1,2-ethanediamine have been investigated through density functional theory. The relative performance of local and gradient-corrected functionals is discussed. The existence of hydrogen-bond formation has been determined with electron localisation function calculations. Proton affinities for nonprotonated and monoprotonated 1,2-ethanediamine have been calculated and are in agreement with experimental data. The influence of solvation has been accounted for through the self-consistent isodensity polarisable continuum model. The results for the nonprotonated conformers show that solvation stabilises those conformers which have the lone pair in an antiperiplanar conformation. Solvation of the monoprotonated conformer stabilises significantly the “anti” conformation, which is unstable in the gas phase. For the di-protonated species, solvation stabilises slightly the gauche conformer, which is unstable in the gas phase. Received: 28 September 1999 / Accepted: 2 May 2000 / Published online: 27 September 2000  相似文献   

7.
The partial Hessian vibrational analysis (PHVA), in which only a subblock of the Hesssian matrix is diagonalized to yield vibrational frequencies for partially optimized systems, is extended to the calculation of vibrational enthalpy and entropy changes for chemical reactions. The utility of this method is demonstrated for various deprotonation reactions by reproducing full HVA values to within 0.1–0.4 kcal/mol, depending on the number atoms included in the PHVA. When combined with the hybrid effective fragment potential method [Gordon MS, et al. (2001) J Phys Chem A 105:293–307], the PHVA method can provide (harmonic) free-energy changes for localized chemical reactions in very large systems. Received: 21 September 2001 / Accepted: 30 October 2001 / Published online: 22 March 2002  相似文献   

8.
A method applying ab initio direct dynamics has been utilized in studying the hydrogen abstraction reaction HCN + OH → CN + H2O. The geometries of the reactants, products, and the transition state have been optimized at the QCISD/6-311G(d, p) level. Single-point energies were further evaluated at the QCISD(T)/6-311+G(2df, 2p)//QCISD/6-311G(d, p) level. The barrier heights for the forward and reverse reactions were predicted to be 15.95 and 7.51 kcal mol−1 at the QCISD(T)/6-311 + G(2df, 2p)//QCISD/6-311G(d, p) level, respectively. The reaction rate constants were calculated in the temperature range from 298 to 4,000 K using the canonical variational transition-state theory with a small-curvature tunneling correction. The results of the calculation show that the theoretical rate constants are in good agreement with experimental data over the measured temperature range of 400–2,600 K. Received: 18 August 2002 / Accepted: 30 August 2002 / Published online: 20 November 2002 Acknowledgements. Our thanks are due to D.G. Truhlar for providing the POLYRATE 8.2 program. This work was supported by the National Science Foundation of China. We also thank D.C. Fang and Y. M. Xie for their valuable help, and P.R. Yan for reading our paper. Correspondence to: Q. S. Li e-mail: qsli@mh.bit.edu.cn  相似文献   

9.
Ab initio molecular orbital theory and density functional theory have been used to study nine isomers of N7 ionic clusters with low spin at the HF/6-31G*, MP2/6-31G*, B3LYP/6-31G*, and B3LYP/6-311(+)G* levels of theory. All stationary points are examined with harmonic vibrational frequency analyses. Four N7 + isomers and five N7 isomers are determined to be local minima or very close to the minima on their potential-energy hypersurfaces, respectively. For N7 + and N7 , the energetically low lying isomers are open-chain structures (C 2 v and C 2 v or C2). The results are very similar to those of other known odd-number nitrogen ions, such as N5 +, N9 +, and N9 , for which the open-chain structures are also the global minima. This research suggests that the N7 ionic clusters are likely to be stable and to be potential high-energy-density materials if they could be synthesized. Received: 16 July 2001 / Accepted: 8 October 2001 / Published online: 21 January 2002  相似文献   

10.
 Nucleophilic vinylic substitutions of 4H-pyran-4-one and 2-methyl-4H-pyran-4-one with ammonia were calculated by the B3LYP method using the 6-31G(d,p) basis set. Bulk solvent effects of aqueous solution were estimated by the polarized continuum and Poisson–Boltzmann self-consistent reaction field models using the 6-311+G(d,p) basis set. In the gas phase different mechanisms were found for the two reaction systems calculated. The reaction of 4H-pyran-4-one proceeds through enol, whereas a feasible path for the less reactive 2-methyl-4H-pyran-4-one is the mechanism through a keto intermediate. Addition of ammonia in concert with proton transfer is the rate-determining step ofthe reaction. The mechanism proceeding either by a bimolecular nucleophilic substitution (SN2) or by one involving a tetrahedral zwitterionic intermediate is shown to be unlikely in the gas phase or nonpolar solution. The effects of bulk solvent not only consist in a reduction of the various activation barriers by about 25–40 kJ mol−1 but also in a change in the reaction mechanism. Received 26 May 2002 / Accepted 26 July 2002 / Published online: 14 February 2003  相似文献   

11.
 The relationship between hydrogen bonding and NMR chemical shifts in the catalytic triad of low-pH α-chymotrypsin is investigated by combined use of the effective fragment potential [(2001) J Phys Chem A 105:293] and ONIOM–NMR [(2000) Chem Phys Lett 317:589] methods. Our study shows that while the His57 Nδ1−H bond is stretched by a relatively modest amount (to about 1.060 ?) this lengthening, combined with the polarization due to the molecular environment, is sufficient to explain the experimentally observed chemical shifts of 18.2 ppm. Furthermore, the unusual down-field shift of Hɛ1 (9.2 ppm) observed experimentally is reproduced and shown to be induced by interactions with the C=O group of Ser214 as previously postulated. The free-energy cost of moving Hδ1 from His57 to Asp102 is predicted to be 5.5 kcal/mol. Received: 26 September 2001 / Accepted: 6 September 2002 / Published online: 21 January 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 222nd National Meeting of the American Chemical Society, 2001 Correspondence to: J. H. Jensen e-mail: jan-jensen@uiowa.edu Acknowledgements. This work was supported by a Research Innovation Award from the Research Corporation and a type G starter grant from the Petroleum Research Fund. The calculations were performed on IBM RS/6000 workstations obtained through a CRIF grant from the NSF (CHE-9974502) and on supercomputers at the National Center for Supercomputer Applications at Urbana-Champaign. The authors are indebted to Visvaldas Kairys for help with the CHARMM program, and to Daniel Quinn for many helpful discussions.  相似文献   

12.
 Addition–elimination reactions involving a nucleophile and a remote leaving group [SH N(AE)tele] are well-known under basic conditions, especially amongst electron-poor six-membered heterocycles, but are less commonly encountered for five-membered heterocycles and are rare under acidic conditions. Concentrated HCl converts 1-hydroxy-1H-pyrazolo[3,4-c] isoquinoline and 1-hydroxy-1H-pyrazolo[3,4-c]quinoline into 3-chloro-1H-pyrazolo[3,4-c]isoquinoline and 3-chloro-1H-pyrazolo[3,4-c]quinoline, respectively. However, apparently neither the isomeric 1-hydroxy-1H-pyrazolo[4,3-c](iso)-quinolines nor the parent 1-hydroxypyrazole undergo this reaction. Additionally, all these systems are refractory under basic conditions. We present a plausible mechanism for the reaction, involving the 3-addition of Cl- to the diprotonated heterocycle, followed by the elimination of water. Calculations of the initial transition states and intermediates, using optimisation at B3LYP/6-311+G(d,p), including thermochemistry [HF/6-31+G(d)], and single-point Poisson–Boltzmann self-consistent reaction field determination of the free energy of solvation (Jaguar Poisson–Boltzmann self-consistent reaction field), support this mechanism and reproduce the observed order of reactivity, the addition step being 2–4 kcal less favourable for the isomeric 1-hydroxy-1H-pyrazolo[4,3-c](iso)quinolines and provide a rationalisation for the role of strong acid. Received: 27 June 2002 / Accepted: 6 September 2002 / Published online: 14 February 2003  相似文献   

13.
 2-(Acetylamino)fluorene (AAF), a potent mutagen and a prototypical example of the mutagenic aromatic amines, forms covalent adducts to DNA after metabolic activation in the liver. A benchmark study of AAF is presented using a number of the most widely used molecular mechanics and semiempirical computational methods and models. The results are compared to higher-level quantum calculations and to experimentally obtained crystal structures. Hydrogen bonding between AAF molecules in the crystal phase complicates the direct comparison of gas-phase theoretical calculations with experiment, so Hartree–Fock (HF) and Becke–Perdew (BP) density functional theory (DFT) calculations are used as benchmarks for the semiempirical and molecular mechanics results. Systematic conformer searches and dihedral energy landscapes were carried out for AAF using the SYBYL and MMFF94 molecular mechanics force fields; the AM1, PM3 and MNDO semiempirical quantum mechanics methods; HF using the 3-21G*and 6-31G* basis sets; and DFT using the nonlocal BP functional and double numerical polarization basis sets. MMFF94, AM1, HF and DFT calculations all predict the same planar structures, whereas SYBYL, MNDO and PM3 all predict various nonplanar geometries. The AM1 energy landscape is in substantial agreement with HF and DFT predictions; MMFF94 is qualitatively similar to HF and DFT; and the MNDO, PM3 and SYBYL results are qualitatively different from the HF and DFT results and from each other. These results are attributed to deficiencies in MNDO, PM3 and SYBYL. The MNDO, PM3 and SYBYL models may be unreliable for compounds in which an amide group is immediately adjacent to an aromatic ring. Received: 26 May 2002 / Accepted: 12 December 2002 / Published online: 14 February 2003  相似文献   

14.
Adsorption behavior of carbon dioxide confined in pillared clays is analyzed by using constant pressure Gibbs ensemble Monte Carlo (GEMC) method. In our simulation, 1-site and 3-site models are used to represent carbon dioxide. At the 1-site model, carbon dioxide is described as a Lennard-Jones (LJ) sphere, while at the 3-site model, carbon dioxide is modeled as a three-sites linear chain represented by EPM2 potential considering the quadrapolar effect. The potential model from Yi et al. for pillared clays is used to emphasize its quasi two-dimensional structure. Comparing the calculated results from the 1-site and the 3-site models at T=228.15 and 258.15 K, we observe that the adsorption amount from the two models is the same basically. However, the local density presents a significant difference, because the shoulder in the main peak near the wall from 3-site model can reflect the orientation of carbon dioxide. Accordingly, in the systematical investigation to explore the effect of porosity and pore width on the adsorption of carbon dioxide in pillared clays, the 3-site model was only used. We observe that for a narrow pore of H=1.02 nm, each isotherm shape displays type I curve, suggesting that it is not inflected by the porosity. However, for the larger pores of H=1.70 and H=2.38 nm, the increase of the porosity alters the shape of adsorption isotherms from a simple linear relation to the first order jump, indicating that the porosity is of very important factor to affect adsorption and phase behavior of fluids confined in pillared clays. The excess adsorptions of carbon dioxide at supercritical temperatures of T=323.15 and 348.15 K are also investigated. We find that the maximum exists for each excess isotherm, and the optimal pressure corresponding to the maximum increases with the pore width. However, the porosity has no significant effect on the optimal pressure.  相似文献   

15.
This study used periodic density functional theory and grand canonical Monte Carlo simulations to investigate the effects of the co-doping of B and N atoms and substituting Zn2+ with Mg2+ or Ca2+ in the organic linker groups of MOF-650. The functionalization increased the polarity of the organic groups, stabilizing the interaction between the MOF and hydrogen molecules. The highest average binding energy of the adsorbed hydrogen in MOF-650 NB-C7-azulene-Mg was calculated to be −4.75 to 5.40 kcal/mol for the α adsorption sites. Using the substitution of NB azulene and metal cations being Mg2+ or Ca2+, The hydrogen storage capacity of functionalized MOF-650 was increased to 22 mg/g at 90 bar/298 K, implying the modification strategy of MOF-650 would strengthen the interaction between MOF frameworks and hydrogen molecules.  相似文献   

16.
An ab initio computational investigation of the electric–field–gradient–induced birefringence in H2 and D2 is presented. The quadrupole moment and all linear and non-linear optical properties contributing to the induced anisotropy of the refractive index are computed by means of Coupled Cluster Singles and Doubles response theory. The latter leads for these systems to Full Configuration Interaction results. Vibrational averaging, centrifugal distortion due to rotation, isotope effects and differences between ortho and para species are also considered.  相似文献   

17.
Density functional theory (DFT) and Monte Carlo (MC) simulation with free energy perturbation (FEP) techniques have been used to study the tautomeric proton transfer reaction of 2-amino-2-oxazoline, 2-amino-2-thiazoline, and 2-amino-2-imidazoline in the gas phase and in water. Two reaction pathways were considered: the direct and water-assisted transfers. The optimized structures and thermodynamic properties of stationary points for the title reaction system in the gas phase were calculated at the B3LYP/6-311+G(d, p) level of theory. The potential energy profiles along the minimum energy path in the gas phase and in water were obtained. The study of the solvent effect of water on the proton transfer of 2-amino-2-oxozoline, 2-amino-2-thiazoline, and 2-amino-2-imidazoline indicates that water as a solvent is favorable for the water-assisted process and slows down the rate of the direct transfer pathway.  相似文献   

18.
19.
 Hybrid quantum mechanical (QM)/molecular mechanical (MM) calculations are used to study two aspects of enzyme catalysis, Kinetic isotope effects associated with the hydride ion transfer step in the reduction of benzyl alcohol by liver alcohol dehydrogenase are studied by employing variational transition-state theory and optimised multidimensional tunnelling. With the smaller QM region, described at the Hartree–Fock ab initio level, together with a parameterised zinc atom charge, good agreement with experiment is obtained. A comparison is made with the proton transfer in methylamine dehydrogenase. The origin of the large range in pharmacological activity shown by a series of α-ketoheterocycle inhibitors of the serine protease, elastase, is investigated by both force field and QM/MM calculations. Both models point to two different inhibition mechanisms being operative. Initial QM/MM calculations suggest that these are binding, and reaction to form a tetrahedral intermediate, the latter process occurring for only the more potent set of inhibitors. Recieved 3 October 2001 / Accepted: 6 September 2002 / Published online: 31 January 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 222nd National Meeting of the American Chemical Society, 2001 Correspondence to: I. H. Hillier Acknowledgements. We thank EPSRC and BBSRC for support of the research and D.G. Truhlar for the use of the POLYRATE code.  相似文献   

20.
The effect of the repulsive interaction between the components of binary copolyesters on their sequence order was investigated with the Monte Carlo simulation method. The phase separation and ester‐interchange reactions were implemented simultaneously with a kind of one‐site bond fluctuation model. When the repulsive interaction energy was applied to the binary copolyesters, miscibility‐induced sequential reordering (MISR) was induced. The more repulsive the pair interaction was, the higher the sequence order was. During the MISR process, homoester‐interchange reactions became more favorable because of the repulsive interaction, accompanying the decrease of the interactional free energy. The sequence order resulting from MISR was independent of the relative trial ratio of phase separation to ester‐interchange reaction at a given value of interaction energy. Restoration of the sequence distribution was also simulated with and without the repulsive interaction between the components of the binary copolyesters to investigate the effect of MISR on the crystallization‐induced sequential reordering (CISR) process in binary copolyesters, where sequences with lengths longer than 6 were assumed to crystallize and could not take part in ester‐interchange reactions. The sequence distribution in the amorphous phase was restored via ester‐interchange reactions. When the repulsive interaction was applied to binary copolyesters during the CISR process, restoration of the sequence distribution was accelerated, indicating that MISR can accelerate the CISR process when a polyester blend shows upper critical solution temperature behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1337–1347, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号