首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, an analytical approach for buckling analysis of thick functionally graded rectangular plates is presented. The equilibrium and stability equations are derived according to the higher-order shear deformation plate theory. Introducing an analytical method, the coupled governing stability equations of functionally graded plate are converted into two uncoupled partial differential equations in terms of transverse displacement and a new function, called boundary layer function. Using Levy-type solution these equations are solved for the functionally graded rectangular plate with two opposite edges simply supported under different types of loading conditions. The excellent accuracy of the present analytical solution is confirmed by making some comparisons of the present results with those available in the literature. Furthermore, the effects of power of functionally graded material, plate thickness, aspect ratio, loading types and boundary conditions on the critical buckling load of the functionally graded rectangular plate are studied and discussed in details. The critical buckling loads of thick functionally graded rectangular plates with various boundary conditions are reported for the first time and can be used as benchmark.  相似文献   

2.
在推广后的England-Spencer功能梯度板理论基础上,研究了功能梯度板在不同荷载作用下的柱面弯曲问题.采用该理论中的位移展开公式,并且材料参数沿板厚方向可以任意连续变化,并将材料由各向同性推广到正交各向异性.假设板在y方向无限长,最终建立了一个从弹性力学理论出发的正交各向异性功能梯度板在横向分布荷载作用下柱面弯曲问题的板理论.通过算例分析,讨论了边界条件、材料梯度及板厚跨比等因素对功能梯度板静力响应的影响.  相似文献   

3.
In this paper, an efficient and simple refined theory is presented for buckling analysis of functionally graded plates. The theory, which has strong similarity with classical plate theory in many aspects, accounts for a quadratic variation of the transverse shear strains across the thickness and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The mechanical properties of functionally graded material are assumed to vary according to a power law distribution of the volume fraction of the constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solutions of rectangular plates are obtained. Comparison studies are performed to verify the validity of present results. The effects of loading conditions and variations of power of functionally graded material, modulus ratio, aspect ratio, and thickness ratio on the critical buckling load of functionally graded plates are investigated and discussed.  相似文献   

4.
The static response of simply supported functionally graded plates (FGP) subjected to a transverse uniform load (UL) or a sinusoidally distributed load (SL) and resting on an elastic foundation is examined by using a new hyperbolic displacement model. The present theory exactly satisfies the stress boundary conditions on the top and bottom surfaces of the plate. No transverse shear correction factors are needed, because a correct representation of the transverse shear strain is given. The material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of material constituents. The foundation is modeled as a two-parameter Pasternak-type foundation, or as a Winkler-type one if the second parameter is zero. The equilibrium equations of a functionally graded plate are given based on the hyperbolic shear deformation theory of plates presented. The effects of stiffness and gradient index of the foundation on the mechanical responses of the plates are discussed. It is established that the elastic foundations significantly affect the mechanical behavior of thick functionally graded plates. The numerical results presented in the paper can serve as benchmarks for future analyses of thick functionally graded plates on elastic foundations.  相似文献   

5.
功能梯度压电材料(FGPM)同时兼具功能梯度材料和压电材料特性,可为多功能或智能化轻质结构设计提供支撑,在诸多领域有着广泛的应用前景.将Mian和Spencer功能梯度板理论由功能梯度弹性材料推广到功能梯度压电材料,解析研究了FGPM板的柱面弯曲问题,其中,材料弹性常数、压电和介电参数沿板厚方向可以任意连续变化.最终,给出了FGPM板受横向均布荷载作用下柱面弯曲问题的弹性力学解.通过算例分析,重点讨论了压电效应对FGPM板静力响应的影响.  相似文献   

6.
A new sinusoidal shear deformation theory is developed for bending, buckling, and vibration of functionally graded plates. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. Unlike the conventional sinusoidal shear deformation theory, the proposed sinusoidal shear deformation theory contains only four unknowns and has strong similarities with classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. The material properties of plate are assumed to vary according to power law distribution of the volume fraction of the constituents. Equations of motion are derived from the Hamilton’s principle. The closed-form solutions of simply supported plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. It can be concluded that the proposed theory is accurate and efficient in predicting the bending, buckling, and vibration responses of functionally graded plates.  相似文献   

7.
In this paper, the wave propagation and transient response of an infinite functionally graded plate under a point impact load in thermal environments are studied. The thermal effects and temperature-dependent material properties are taken into account. The temperature field considered is assumed to be a uniform distribution over the plate surface and varies in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Considering the effects of transverse shear deformation and rotary inertia, the governing equations of the wave propagation in the functionally graded plate are derived from Hamilton’s principle. The analytic dispersion relation of the functionally graded plate is obtained by means of integral transforms and a complete discussion of dispersion for the functionally graded plate is given. Using the dispersion relation and integral transforms, exact integral solutions of the functionally graded plate under a point impact load in thermal environments are obtained. The influences of the volume fraction distributions and temperature field on the wave propagation and transient response of functionally graded plates are discussed in detail. The results carried out can be used in the ultrasonic inspection techniques and provide a theoretical basis for engineering applications.  相似文献   

8.
In this study, the static response is presented for a simply supported functionally graded rectangular plate subjected to a transverse uniform load. The generalized shear deformation theory obtained by the author in other recent papers is used. This theory is simplified by enforcing traction-free boundary conditions at the plate faces. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. Material properties of the plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The equilibrium equations of a functionally graded plate are given based on a generalized shear deformation plate theory. The numerical illustrations concern bending response of functionally graded rectangular plates with two constituent materials. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, and volume fraction distributions are studied. The results are verified with the known results in the literature.  相似文献   

9.
In the present paper, a non-classical model for functionally graded annular sector microplates under distributed transverse loading is developed based on the modified couple stress theory and the first-order shear deformation plate theory. The model contains a single material length scale parameter which can capture the size effect. The material properties are graded through the thickness of plates according to a power-law distribution of the volume fraction of the constituents. The equilibrium equations and boundary conditions are simultaneously derived from the principle of minimum total potential energy. The system of equilibrium equations is then solved using the generalized differential quadrature method. The effects of length scale parameter, power-law index and geometrical parameters on the bending response of annular sector plates subjected to distributed transverse loading are investigated.  相似文献   

10.
Analytical solutions for bending, buckling, and vibration analyses of thick rectangular plates with various boundary conditions are presented using two variable refined plate theory. The theory accounts for parabolic variation of transverse shear stress through the thickness of the plate without using shear correction factor. In addition, it contains only two unknowns and has strong similarities with the classical plate theory in many aspects such as equations of motion, boundary conditions, and stress resultant expressions. Equations of motion are derived from Hamilton’s principle. Closed-form solutions of deflection, buckling load, and natural frequency are obtained for rectangular plates with two opposite edges simply supported and the other two edges having arbitrary boundary conditions. Comparison studies are presented to verify the validity of present solutions. It is found that the deflection, stress, buckling load, and natural frequency obtained by the present theory match well with those obtained by the first-order and third-order shear deformation theories.  相似文献   

11.
基于两组板考虑初始荷载效应的动力控制微分方程:一般形式的动力控制微分方程和极坐标形式的动力控制微分方程,运用Galerkin(伽辽金)法求解得到了简支矩形板、固支矩形板、简支等边三角形板、固支椭圆形板、简支圆形板和固支圆形板6种典型板考虑初始荷载效应的自由振动基频(第一阶频率)近似解.通过与相关文献提出的有限元法计算结果对比,验证了公式的正确性.基频近似解表达式简单明了,物理意义明确,清楚地说明了初始荷载及相关因素对板自由振动基频的影响,直观地说明了板的初始荷载效应这一概念.计算分析表明:初始荷载的存在增加了板的弯曲刚度,提高了板的自振频率.这种初始荷载效应对频率的影响主要受初始荷载大小、跨厚比及边界条件等因素的影响.在计算分析和设计中应考虑并重视这种初始荷载效应对板计算分析带来的影响.  相似文献   

12.
Nonlinear bending analysis is first presented for functionally graded elliptical plates resting on two-parameter elastic foundations, and investigations on FGM elliptical plates with immovable simply supported edge are also new in literature. Material properties are assumed to be temperature-dependent and graded in the thickness direction. The governing equations of a functionally graded plate are based on Reddy’s high-order shear deformation plate theory that includes thermal effects. Ritz method is employed to determine the central deflection-load and bending moment-load curves, the validity can be confirmed by comparison with related researchers’ results, and it is worth noting that the forms of approximate solutions are well-chosen in consideration of both simplicity and accuracy. Influences played by different supported boundaries, thermal environmental conditions, foundation stiffness, ratio of major to minor axis and volume fraction index are discussed in detail.  相似文献   

13.
Within the framework of three-dimensional elasticity theory, this paper investigates the axisymmetric bending of novel functionally graded polymer nanocomposite circular and annular plates reinforced with graphene nanoplatelets (GPLs) whose weight fraction varies continuously and smoothly along the thickness direction. The generalized Mian and Spencer method is utilized to obtain the analytical solutions of nanocomposite circular and annular plates under a combined action of a uniformly distributed transverse load and a through-thickness steady temperature field. Three different distribution patterns of GPLs within the polymer matrix are considered. The present analytical solutions are validated through comparisons against those available in open literature for the reduced cases. A parametric study is conducted to examine the effects of GPL weight fraction, distribution pattern, plate thickness to radius ratio, and boundary conditions on the stress and deformation fields of the plate. The results show that GPL nanofillers with a low content can have a significant reinforcing effect on the bending behavior of the thermo-mechanically loaded plate.  相似文献   

14.
The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.  相似文献   

15.
The formulation of the acoustoelasticity problem is given on the basis of refined motion equations of orthotropic plates. These equations are constructed in the first approximation by reducing the three-dimensional equations of the theory of elasticity to the two-dimensional equations of the theory of plates, where the approximation of the transverse tangential stresses and the transverse reduction stress is made with the help of trigonometric basis functions in the thickness direction. Wherein at the points of the boundary (front) surfaces, the static boundary conditions of the problem for tangential stresses are satisfied exactly and for transverse normal stress — approximately. Accounting for internal energy dissipation in the plate material is based on the Thompson—Kelvin—Voigt hysteresis model. In case of formulating problems on dynamic processes of plate deformation in vacuum, the equations are divided into two separate systems of equations. The first of these systems describes non-classical shear-free, longitudinal-transverse forms of movement, accompanied by a distortion of the flat form of cross sections, and the second system describes transverse bending-shear forms of movement. The latter are practically equivalent in quality and content to the analogous equations of the well-known variants of refined theories, but, unlike them, with a decrease in the relative thickness parameter, they lead to solutions according to the classical theory of plates. The motion of the surrounding the plate acoustic media is described by the generalized Helmholtz wave equations, constructed with account of energy dissipation by introducing into consideration the complex sound velocity according to Skudrzyk.  相似文献   

16.
In the present article, the idea of using the variable-order fractional-derivative thermoviscoelastic constitutive laws in dynamic stress and vibration analysis of the engineering structures, the required implementation backgrounds, and the relevant numerical solution procedures are investigated for the first time. In this regard, dynamic 3D stress and displacement fields and radial/transverse vibrations of transversely graded viscoelastic spinning thick plates/discs exposed to sudden thermoelastic loads are investigated. Instead of using the approximate plate theories, the exact thermoviscoelasticity theory is employed in the development of the governing equations. Since the variable fractional order is dependent on the localized deformation rates, the resulting thermoviscoelastic integro-differential equations are nonlinear. These equations are solved by utilizing a combination of the second-order backward/central/forward finite difference discretization of the spatial and time domains, numerical evaluation and updating of the Caputo-type fractional derivatives, updating the growing number of terms of the governing equations, and Picard's iterations. Various edge conditions are considered. Finally, comprehensive sensitivity analyses and various 3D plots are presented and discussed regarding the effects of the variable fractional order of the constitutive law, time variations of the nonuniformly distributed transverse loads, and edge conditions on the distributions and damping of the resulting displacement and stress components.  相似文献   

17.
Free vibration and static analysis of functionally graded material (FGM) plates are studied using higher order shear deformation theory with a special modification in the transverse displacement in conjunction with finite element models. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. The fundamental equations for FGM plates are derived using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. Results have been obtained by employing a continuous isoparametric Lagrangian finite element with 13 degrees of freedom per node. Convergence tests and comparison studies have been carried out to demonstrate the efficiency of the present model. Numerical results for different thickness ratios, aspect ratios and volume fraction index with different boundary conditions have been presented. It is observed that the natural frequency parameter increases for plate aspect ratio, lower volume fraction index n and smaller thickness ratios. It is also observed that the effect of thickness ratio on the frequency of a plate is independent of the volume fraction index. For a given thickness ratio non-dimensional deflection increases as the volume fraction index increases. It is concluded that the gradient in the material properties plays a vital role in determining the response of the FGM plates.  相似文献   

18.
A method for deriving one-dimensional wave propagation equations in thin inhomogeneous anisotropic bars based on the mathematical homogenization theory for periodic media is used to obtain equations governing the longitudinal and transverse vibrations of a homogeneous circular bar. The equations are derived up to O8) terms and take into account variable body forces and surface loads. Here, ε is the ratio of the bar’s typical thickness to the typical wavelength.  相似文献   

19.
A finite element formulation of the equations governing laminated anisotropic plates using Reddy's higher-order theory is presented. This simple higher-order shear deformable theory takes into account the parabolic distribution of the transverse shear deformation through the thickness of the plate and contains the same unknowns as in the first-order shear deformation theory. Finite element solutions are presented for rectangular plates of different layups, such as cross-ply, antisymmetric angle-ply, and sandwich plates with various material properties, boundaries, and plate aspect ratios. The numerical results are compared with the available closed-form results, the 3-D linear elasticity theory results, and the other available numerical results. A comparison is also made with test data from a laminated cantilever plate.  相似文献   

20.
In the present study, a novel exact closed-form procedure based on the third order shear deformation plate theory is developed to analyze in-plane and out-of-plane frequency responses of circular/annular functionally graded material (FGM) plates embedded in piezoelectric layers for both close/open circuit electrical boundary conditions. Introducing a new analytical method, five governing partial deferential equations of motion beside Maxwell electrostatic equation are solved via an exact closed-form method. The high accuracy and reliability of the present approach is confirmed by comparing some of the present data with their counterparts reported in the literature. Finally, the effect of material properties, power law index and boundary conditions on the free vibration of the smart FGM plate are studied and discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号