首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we derive the field of displacements and strains for thin-walled open composite beams with composite laminated material including in their kinematics flexural and torsional shear deformations effects. The equilibrium equations are defined through the variational formulation and show that is possible to formulate Co finite elements taking into account the torsional shear deformation. Stress-strain relationships for the cross-section of thin-walled composite beams are obtained by extending first-order laminate (FSDT: first-order shear deformation) theory and using a «free stress resultant condition at the boundary». Three different one-dimensional finite elements with Co continuity are formulated for the study of thin-walled open composite beams and they are labelled as BSW (beam with shear and warping). The influence of the integration strategy in the BSW elements is evaluated via the shear-locking phenomenon and the rate of convergence for displacements and rotations. The stiffness matrix integration is compared using exact and reduced integration methods. Examples of pure torsion and flexo-torsion in a cantilever composite beam are performed. Numerical results are compared to those reported by other authors.  相似文献   

2.
The semi-inverse method is adopted to search for a variational principle for an unelectroded piezoelastic beam. A trial variational formulation with energy integral is constructed with an unknown function, which is identified so that the Euler–Lagrange equations are equivalent to the governing equations.  相似文献   

3.
The paper deals with the asymptotic formulation and justification of a mechanical model for a dynamic piezoelastic shallow shell in Cartesian coordinates. Starting from the three‐dimensional dynamic piezoelastic problem and by an asymptotic approach, the authors study the convergence of the displacement field and of the electric potential as the thickness of the shell goes to zero. In order to obtain a nontrivial limit problem by asymptotic analysis, we need different scalings on the mass density. The authors show that the transverse mechanical displacement field coupled with the in‐plane components solves an problem with new piezoelectric characteristics and also investigate the very popular case of cubic crystals and show that, for two‐dimensional shallow shells, the coupling piezoelectric effect disappears. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The work presented in this article is the outcome of a combined strategy of a mathematical tool for 2D cross-sectional analysis, i.e., Variational Asymptotic Method (VAM) as well as the 1D exact beam analyzer, i.e., the intrinsic mixed variational formulation for modeling and analysis of Piezoelectric-laminated composite beams. This work talks about a novel approach of mixed variational formulation to analyze a two-way electromechanically coupled piezoelectric composite beam. In a classical intrinsic mixed variational approach for a passive structure, the 1D exact beam model deals only with mechanical degrees of freedom. In the present case, an extra 1D electrical degree of freedom has been incorporated. A computational code is developed based on the present theory to solve the two-way coupled electromechanical beam problem. In the present case, we have validated the static results for sensor application. Both linear and nonlinear results have been discussed. Results obtained are very promising and are helpful in building a platform where design, optimization and nonlinear analysis of composite ‘smart’ beams in a multibody framework can be done faster while maintaining acceptable accuracy.  相似文献   

5.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
With the significantly increasing applications of smart structures, piezoelectric material is widely used in branches of engineering sciences. Normally, the Finite Element Method is employed in the numerical analysis of these structures [2]. In this contribution, in order to avoid the locking effects and zero energy modes, the Assumed Natural Strain (ANS) Method [4] is implemented into four‐node piezoelectric shallow shell elements, by using the two‐field variational formulation in which displacements and electric potentials serve as independent variables and the three‐field variational formulation in which the dielectric displacement is taken as an independent variable additionally [3]. Moreover, a quadratic variation of the electric potential through the thickness direction is applied in the two‐field formulation. Numerical examples of piezoelectric sensors and actuators are presented, showing the behaviour of the shell elements by using different hybrid finite element formulations. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
新型空间薄壁梁单元   总被引:2,自引:0,他引:2  
基于Timoshenko梁理论和Vlasov薄壁杆件约束扭转理论,建立了具有内部结点的新型空间薄壁截面梁单元.通过对弯曲转角和翘曲角采取独立插值的方法,考虑了横向剪切变形,扭转剪切变形及其耦合作用,弯曲变形和扭转变形的耦合以及二次剪应力等因素影响,由Hellinger-Reissner广义变分原理,推得单元刚度矩阵.算例表明所建模型具有良好的精度,可用于空间薄壁杆系结构的有限元分析.  相似文献   

8.
Katrin Schulz  Sven Klinkel 《PAMM》2007,7(1):4040027-4040028
A finite element formulation to analyze piezoelectric shell problems is presented. A reference surface of the shell is modelled with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electric degree of freedom, which is the difference of the electric potential in thickness direction. The formulation is based on the mixed field variational principle of Hu-Washizu. The independent fields are displacements u , electric potential φ, strains E , electric field E , stresses S and dielectric displacements D . The mixed formulation allows an interpolation of the strains and the electric field in thickness direction. Accordingly a three-dimensional material law is incorporated in the variational formulation. It is remarked that no simplification regarding the constitutive law is assumed. The formulation allows the consideration of arbitrary constitutive relations. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent stress and dielectric displacement fields. They are defined as zero in thickness direction. The present shell element fulfills the important patch tests: the in-plane, bending and shear test. Some numerical examples demonstrate the applicability of the present piezoelectric shell element. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
本文利用变分原理建立了具有弹性边拱及拉杆支承的双曲扁壳的平衡方程式及相应的边界条件和角点条件,这里假定边拱只在其本身平面内有刚度,边拱的扭转刚度和垂直于其平面的弯曲刚度都略去不计,本文研究了不许自由外伸的角点铰支条件,以及能够自由外伸的角点简支条件,前者相当于周边有拉杆限制角点外伸位移的情况,后者相当于周边无拉杆的情况.对于前者而言,本文近似地假定边拱沿弧方向的抗拉伸刚度为无穷大,亦即假定扁壳的边界切向位移为零,边拱只通过其垂直于扁壳平面的弯曲来产生弹性支承的作用.这些支承条件是近似地符合当前双曲扁壳屋盖的设计条件的.本文利用双三角级数解法求得具有弹性边拱及拉杆支承的方形底球面扁壳在自重载荷下的正确解.其特点在于先将边界条件积分处理使先满足角点条件,然后求解平面应力微分方程使满足积分后的边界条件.本文的结果直接给出拉杆中的拉力,对于具体设计问题是有用的.本文提出的积分形式的边界条件方法,对于弹性支承的边界问题在板壳方面的应用中是有它的普遍实用意义的.本文还给出了具有弹性边拱支承的方形底扁球壳的数值结果,角点为铰支或简支的,选取的参数值为λ=11.5936.计算结果表明级数收敛很快,并得出了边拱的弹性变形对壳体内力、内力矩及挠度分布规律的影响.  相似文献   

10.
This contribution is concerned with mixed finite element formulations for modeling piezoelectric beam and shell structures. Due to the electromechanical coupling, specific deformation modes are joined with electric field components. In bending dominated problems incompatible approximation functions of these fields cause incorrect results. These effects occur in standard finite element formulations, where interpolation functions of lowest order are used. A mixed variational approach is introduced to overcome these problems. The mixed formulation allows for a consistent approximation of the electromechanical coupled problem. It utilizes six independent fields and could be derived from a Hu-Washizu variational principle. Displacements, rotations and the electric potential are employed as nodal degrees of freedom. According to the Timoshenko theory (beam) and the Reissner-Mindlin theory (shell), the formulations account for constant transversal shear strains. To incorporate three dimensional constitutive relations all transversal components of the electric field and the strain field are enriched by mixed finite element interpolations. Thus the complete piezoelectric coupling is appropriately captured. The common assumption of vanishing transversal stress and dielectric displacement components is enforced in an integral sense. Some numerical examples will demonstrate the capability of the presented finite element formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
A time (Galerkin) finite element method (time FEM) for structural dynamics is proposed in this paper. The key lies in a variational formulation that is well-posed and equivalent to the conventional strong form of governing equations of structural dynamics. Based on the variational formulation, a time finite element formulation is naturally established and its convergence property is easily derived through an a priori error analysis. Technical details on practical implementation of the time FEM are presented. Numerical examples are studied to verify the proposed time FEM.  相似文献   

12.
This paper presents extensions to traditional calculus of variations for systems containing fractional derivatives. The fractional derivative is described in the Riemann-Liouville sense. Specifically, we consider two problems, the simplest fractional variational problem and the fractional variational problem of Lagrange. Results of the first problem are extended to problems containing multiple fractional derivatives and unknown functions. For the second problem, we also present a Lagrange type multiplier rule. For both problems, we develop the Euler-Lagrange type necessary conditions which must be satisfied for the given functional to be extremum. Two problems are considered to demonstrate the application of the formulation. The formulation presented and the resulting equations are very similar to those that appear in the field of classical calculus of variations.  相似文献   

13.
A formulation is presented for steady-state dynamic responses of rotating bending-torsion coupled composite Timoshenko beams (CTBs) subjected to distributed and/or concentrated harmonic loadings. The separation of cross section's mass center from its shear center and the introduced coupled rigidity of composite material lead to the bending-torsion coupled vibration of the beams. Considering those two coupling factors and based on Hamilton's principle, three partial differential non-homogeneous governing equations of vibration with arbitrary boundary conditions are formulated in terms of the flexural translation, torsional rotation and angle rotation of cross section of the beams. The parameters for the damping, axial load, shear deformation, rotation speed, hub radius and so forth are incorporated into those equations of motion. Subsequently, the Green's function element method (GFEM) is developed to solve these equations in matrix form, and the analytical Green's functions of the beams are given in terms of piecewise functions. Using the superposition principle, the explicit expressions of dynamic responses of the beams under various harmonic loadings are obtained. The present solving procedure for Timoshenko beams can be degenerated to deal with for Rayleigh and Euler beams by specifying the values of shear rigidity and rotational inertia. Cantilevers with bending-torsion coupled vibration are given as examples to verify the present theory and to illustrate the use of the present formulation. The influences of rotation speed, bending-torsion couplings and damping on the natural frequencies and/or shape functions of the beams are performed. The steady-state responses of the beam subjected to external harmonic excitation are given through numerical simulations. Remarkably, the symmetric property of the Green's functions is maintained for rotating bending-torsion coupled CTBs, but there will be a slight deviation in the numerical calculations.  相似文献   

14.
A variational formulation of boundary-value problems of the non-linear dynamic theory of elasticity using the Hamilton functional is presented. The quasi-static boundary-value problem for thin plates is considered. The initial system of equations, in a two-dimenonal formulation, is represented in terms of generalized forces and displacements. The sufficient conditions for the existence and uniqueness of a weak solution are established.  相似文献   

15.
This paper deals with the linear free vibration analysis of Bernoulli–Euler and Rayleigh curved beams using isogeometric approach. The geometry of the beam as well as the displacement field are defined using the NURBS basis functions which present the basic concept of the isogeometric analysis. A novel approach based on the fundamental relations of the differential geometry and Cauchy continuum beam model is presented and applied to derive the stiffness and consistent mass matrices of the corresponding spatial curved beam element. In the Bernoulli–Euler beam element only translational and torsional inertia are taken into account, while the Rayleigh beam element takes all inertial terms into consideration. Due to their formulation, isogeometric beam elements can be used for the dynamic analysis of spatial curved beams. Several illustrative examples have been chosen in order to check the convergence and accuracy of the proposed method. The results have been compared with the available data from the literature as well as with the finite element solutions.  相似文献   

16.
损伤粘弹性力学的广义变分原理及应用   总被引:3,自引:0,他引:3  
从粘弹性材料的Boltzmann迭加原理和带空洞材料的线弹性本构关系出发,提出了一种损伤粘弹性材料具有广义力场的本构模型.应用变积方法得到了以卷积形式表示的泛函,并建立了损伤粘弹性固体的广义变分原理和广义势能原理.把它们应用于带损伤的粘弹性Timoshenko梁,得到了Timoshenko梁的统一的运动微分方程、初始条件和边界条件. 这些广义变分原理为近似求解带损伤的粘弹性问题提供了一条途径.  相似文献   

17.
This paper presents a finite volume (FV) formulation for the free vibration analysis and active vibration control of the smart beams with piezoelectric sensors and actuators. The governing equations based on Timoshenko beam theory are discretized using the finite volume method. For the purpose of forced vibration control of beam structures, the negative velocity feedback controller is designed for the single-input, single-output system. To achieve the best effect, the piezoelectric sensors and actuators are coupled with the host structure in different positions and then the performance of the designed control system is evaluated for each position. In the test examples, first the shear locking free feature of the present formulation is demonstrated. This has been performed by doing static and natural frequency analysis of some reference models. Then, the capability of the proposed method for the prediction of uncontrolled forced vibration response and active vibration control of a beam structure is studied.  相似文献   

18.
带摩擦的弹性接触问题广义变分不等原理的简化证明   总被引:4,自引:0,他引:4  
在弹性摩擦接触问题中 ,从变分原理出发来研究接触问题 ,可以将摩擦力纳入问题的能量泛函 .为了得到摩擦约束弹性接触问题的能量泛函 ,日前大多是用拉格朗日乘子法 ,但拉格朗日方法用在变分不等问题中 ,要利用非线性泛函分析和凸分析来证明 ,证明复杂 .本文利用向量分析的工具及巧妙的变换 ,对带摩擦约束的弹性接触问题的广义变分不等原理进行了严格的证明 ,由于只用到向量分析 ,简化了证明 .  相似文献   

19.
弹性接触问题的对偶混合有限元分析   总被引:6,自引:0,他引:6  
王烈衡  王光辉 《计算数学》1999,21(4):483-494
1.引言用混合有限元方法求解弹性力学问题,其优点在于可同时求解位移和应力.力学问题的混合变分形式是混合有限元方法的基础.对于弹性接触问题,文献[6]给出了一种混合变分形式,以及相应的混合有限元分析(也可见[10]).其混合变分形式是直接从位移交分方程和Hook方程导出的,获得了应力a在L2(Ω)而位移、在H1(Ω)的一个闭凸子集上求解的混合变分问题.本文在[9]中提出的混合变分形式的基础上,再引入另一个Laprange乘子,获得了三重组混合变分形式.它能同时求解物体内点的应力,位移和接触边界上的…  相似文献   

20.
The aim of this paper is to study an interaction law coupling recoverable adhesion, friction and unilateral contact between two viscoelastic bodies of Kelvin–Voigt type. A dynamic contact problem with adhesion and nonlocal friction is considered and its variational formulation is written as the coupling between an implicit variational inequality and a parabolic variational inequality describing the evolution of the intensity of adhesion. The existence and approximation of variational solutions are analysed, based on a penalty method, some abstract results and compactness properties. Finally, some numerical examples are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号