首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the interlaminar stresses of generally laminated piezoelectric (PZT) plates are presented. The electromechanical coupling effect of the piezoelectric plate is considered and the governing equations and boundary conditions are derived using the principle of minimum total potential energy. The solution procedure is a three-dimensional multi-term extended Kantorovich method (3DMTEKM). The objective of this paper is to study coupling influence on the edge effects of piezolaminated plates with finite dimensions and arbitrary lay-ups under uniform axial strain. These results can provide a benchmark for checking the accuracy of the other numerical methods or two-dimensional laminate theories. To verify the accuracy of the 3DMTEKM, special cases such as cross-ply or symmetric laminates are investigated and the results are compared with other analytical solutions available in the literature. Excellent agreement is achieved and then other numerical results are presented for general cases. Numerical examples imply on the singular behavior of interlaminar normal/shear stresses and electric field strength components near the edges of the piezolaminated plates. The coupling influence on the free edge effect with respect to the lay-ups of piezoelectric plate is studied in several examples.  相似文献   

2.
In this article, a hollow circular shaft made from functionally graded piezoelectric material (FGPM) such as PZT_5 has been studied which is rotating about its axis at a constant angular velocity ω. This shaft subjected to internal and external pressure, a distributed temperature field due to steady state heat conduction with convective boundary condition, and a constant potential difference between its inner and outer surfaces or combination of these loadings. All mechanical, thermal and piezoelectric properties except for the Poisson’s ratio are assumed to be power functions of the radial position. The governing equation in polarized form is shown to reduce to a system of second-order ordinary differential equation for the radial displacement. Considering six different sets of boundary conditions, this differential equation is analytically solved. The electro-thermo-mechanical stress and the electric potential distributions in the FGPM hollow shaft are discussed in detail for the piezoceramic PZT_5. The presented results indicate that the material in-homogeneity has a significant influence on the electro-thermo-mechanical behaviors of the FGPM rotating shaft and should therefore be considered in its optimum design.  相似文献   

3.
The closed-form exact solution for the hygrothermal response of inhomogeneous piezoelectric hollow cylinders is obtained. The interaction of electric potentials, electric displacement and elastic deformations is presented. The present cylinder is subjected to both a mechanical load and an electric potential. The material properties coefficients of the present cylinder are assumed to be changed in the radial direction by different distribution forms. The field quantities like displacement, stresses and electric potentials in the inhomogeneous piezoelectric cylinders are determined. The significant of influences of material inhomogeneity, initial temperature, final moisture, and the load and electric ratios in the field quantities are investigated. The concluding remarks and suitable discussions are made.  相似文献   

4.
A theory of the scattering of electromagnetic waves by homogeneous spheres, the so-called Mie theory, is presented in a unique and coherent manner in this paper. We begin with Maxwell's equations, from which the vector wave equations are derived and solved by means of the two orthogonal solutions to the scalar wave equation. The transverse incident electric field is mapped in spherical coordinates and expanded in known mathematical functions satisfying the scalar wave equation. Determination of the unknown coefficients in the scattered and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of a sphere. Far-field solutions for the electric field are then given in terms of the scattering functions. Transformation of the electric field to the reference plane containing incident and scattered waves is carried out. Extinction parameters and the phase matrix are derived from the electric field perpendicular and parallel to the reference plane. On the basis of the independent-scattering assumption, the theory is extended to cases involving a sample of homogeneous spheres.  相似文献   

5.
In this paper we present two subjects of our actual research in the field. The first deals with the boundary conditions at the crack faces. The well known model by Hao and Shen gives opportunity to take the finite dielectric permeability of the crack into account, without having to solve the two- or three-dimensional coupled boundary value problem of solid material and crack medium. This approach, however, is based on the assumption of the electric field being perpendicular to the crack faces. We investigate this problem for arbitrary poling and field directions based on a combined analytical-numerical approach. The second focus of the paper is on the effective properties of piezoelectrics with cracks. Here, homogenization procedures are applied and extended towards coupled field problems including e.g. Maxwell stresses at internal boundaries and interfaces. Effective elastic, dielectric and piezoelectric constants exhibit interesting effects. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The focus of this paper is on the analytical buckling solutions of piezoelectric cylindrical nanoshells under the combined compressive loads and external voltages. To capture the small-scale characteristics of the nanostructures, the constitutive equations with the coupled nonlocal and surface effects are adopted within the framework of Reddy's higher-order shell theory. The governing equations involving the displacements and induced piezoelectric field are solved by employing the separation of variables. The derived accurate solutions conclude that bucking critical stresses should go down rapidly while the nonlocal effects reach a certain level. With the enhancing surface effects, the stability of piezoelectric cylindrical nanoshells can be improved significantly. Meanwhile, the induced electric field also plays an important role in elevating the buckling critical stresses. For the nanoshells with remarkable nonlocal effects, boundary conditions, shell length and radius have little influence on the buckling solutions. The detailed effects of the boundary conditions, geometric parameters, material properties and applied voltages are discussed.  相似文献   

7.
Katrin Schulz  Sven Klinkel 《PAMM》2007,7(1):4040027-4040028
A finite element formulation to analyze piezoelectric shell problems is presented. A reference surface of the shell is modelled with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electric degree of freedom, which is the difference of the electric potential in thickness direction. The formulation is based on the mixed field variational principle of Hu-Washizu. The independent fields are displacements u , electric potential φ, strains E , electric field E , stresses S and dielectric displacements D . The mixed formulation allows an interpolation of the strains and the electric field in thickness direction. Accordingly a three-dimensional material law is incorporated in the variational formulation. It is remarked that no simplification regarding the constitutive law is assumed. The formulation allows the consideration of arbitrary constitutive relations. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent stress and dielectric displacement fields. They are defined as zero in thickness direction. The present shell element fulfills the important patch tests: the in-plane, bending and shear test. Some numerical examples demonstrate the applicability of the present piezoelectric shell element. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
主被动阻尼层合板结构的自由振动和阻尼特性分析   总被引:3,自引:0,他引:3  
给出了含主被动阻尼非对称复合材料层合板结构的振动微分方程;得到了在压电材料和高粘弹材料作主被动阻尼层情况下,简支层合板结构自由振动的自然频率和损失因子的解析解;分析了正逆向压电效应对自然频率和损失因子的影响  相似文献   

9.
Torsional wave motion in a finite hollow cylinder of piezoelectric material of (622) crystal class, under a time-dependent mechanical boundary condition is investigated. The inhomogeneity is restricted to the variations of density and other physical constants of the medium as a certain power of the radial distance. The expressions for the displacement and the electric potential of the present solution are compared with those under time-dependent electric boundary condition. Numerical values of the roots of the frequency equation for β-quartz are presented.  相似文献   

10.
A time-dependent solution of the radiative diffusion energy equation in a hot plutonium sphere close to radiative equilibrium is derived. Based on a general iteration scheme, the analytical solutions correct to first and second order are derived. The outer boundary condition has been adopted from neutron transport theory.  相似文献   

11.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
13.
Magnetothermoelastic creep behavior of thick-walled spheres made of functionally graded materials (FGM) placed in uniform magnetic and distributed temperature fields and subjected to an internal pressure is investigated using method of successive elastic solution. The material creep, magnetic and mechanical properties through the radial graded direction are assumed to obey the simple power law variation. Using equations of equilibrium, stress-strain and strain-displacement a differential equation, containing creep strains, for displacement is obtained. A semi-analytical method in conjunction with the Mendelson’s method of successive elastic solution has been developed to obtain history of stresses and strains. History of stresses, strains and effective creep strain rate from their initial elastic distribution at zero time up to 55 years are presented in this paper. Stresses, strains and effective creep strain rate are changing in time with a decreasing rate so that after almost 50 years the time-dependent solution approaches the steady state condition when there is no distinction between stresses and strains at 50 and 55 years.  相似文献   

14.
This paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using Hamilton's principle and nonlinear strains of Von-Karman. The modified couple stress theory has been applied to considering small scale effects. An analytical approach was developing to obtain exact results with various boundary conditions. After all, results have been presented by change in some parameters, such as; aspect ratio, effect of various boundary conditions, electric voltage and length scale parameter influences. At the end, results showed that the effect of external electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant.  相似文献   

15.
We present a three-dimensional solution of a sphere nearby an infinite cylinder at low Reynolds number. We utilize the Lamb’s general solution based on spherical harmonics and develop a framework based on cylindrical harmonics to solve the flow field around the sphere and outside the cylinder, respectively. The solution is solved semi-analytically by considering geometrical parameters, including sphere radius, sphere velocity, separation distance and cylinder radius. The drag force coefficients of the sphere which are dependent on the distance between the cylinder surface and the sphere, as well as the velocity contours in the vicinity of the sphere, are analyzed. We also provide an analytical formula to calculate the drag force. The analytical formula has good quantitative agreement with the semi-analytical solution when the radius of the cylinder is smaller than the sphere. Such analysis can give insights into the details of the complex interaction between the sphere and cylinder.  相似文献   

16.
通过利用八维Stroh公式以及共形映射、解析延拓和奇点分析技术,获得了对一压电基体中已部分脱开的刚性导体椭圆夹杂二维问题的闭合形式全场解答。也推导了一些新的恒等式和求和式,通过这些恒等式及求和式可获得沿界面应力和电位移分布以及刚性夹杂转动的实形式表示。正如所预料的,在脱开界面的端部应力及电位移显现出与在压电材料Griffith界面裂纹的研究中所发现的相似的奇异行为。最后也给出了几个算例以展示所得到解答的一般性以及各种载荷条件、几何参数和机电常数等对界面处应力及电位移分布的影响。  相似文献   

17.
A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals is considered. The Fourier transform technique is used to solve a moving crack problem under the action of antiplane shear and inplane electric field. Full elastic stresses of phonon and phason fields and electric fields are derived for a crack running with constant speed in the periodic plane. Obtained results show that the coupled elastic fields inside piezoelectric quasicrystals depend on the speed of crack propagation, and exhibit the usual square-root singularity at the moving crack tip. Electric field and phason stresses do not have singularity and electric displacement and phonon stresses have the inverse square-root singularity at the crack tip for a permeable crack. The field intensity factors and energy release rates are obtained in closed form. The crack velocity does not affect the field intensity factors, but alters the dynamic energy release rate. Bifurcation angle of a moving crack in a 1D hexagonal piezoelectric quasicrystal is evaluated from the viewpoint of energy balance. Obtained results are helpful to better understanding crack advance in piezoelectric quasicrystals.  相似文献   

18.
In this paper we investigate the unknown body problem in a wave guide where one boundary has a pressure release condition and the other an impedance condition. The method used in the paper for solving the unknown body inverse problem is the intersection canonical body approximation (ICBA). The ICBA is based on the Rayleigh conjecture, which states that every point on an illuminated body radiates sound from that point as if the point lies on its tangent sphere. The ICBA method requires that an analytical solution be known exterior to a canonical body in the wave guide. We use the sphere of arbitrary centre and radius in the wave guide as our canonical body. We are lead then to analytically computing the exterior solution for a sphere between two parallel plates. We use the ICBA to construct solutions at points ranging over the suspected surface of the unknown object to reconstruct the unknown object using a least‐squares matching of computed, acoustic field against the measured, scattered field. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

20.
含椭圆形夹杂的压电材料平面问题   总被引:3,自引:0,他引:3  
应用复变函数的Faber级数展开方法,本文研究了含椭圆形夹杂的压电材料平面问题,给出了问题的封闭解·解答表明,椭圆夹杂内的应力、应变、电场强度和电位移均为常量·通过算例,还讨论了正、逆压电效应在基体孔周处的机电行为·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号