首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, a discussion and analysis is presented of the Kujang sulhae by Nam Pyoˇng-Gil (1820-1869), a 19th-century Korean commentary on the Jiuzhang suanshu. Nam copied the problems and procedures from the ancient Chinese classic, but replaced Liu Hui’s and Li Chunfeng’s commentaries with his own. In his postface Nam expressed his dissatisfaction with the earlier commentaries, because the approaches of Liu and Li did not match those of his contemporary readers well. This can be seen from the most important features of Nam’s commentary: the use of a synthesis of European and Chinese mathematical methods, easy explanations appealing to intuition, and disuse of the methods of infinitesimals and limits in Liu’s and Li’s commentaries. Based on his own postface and these features of his commentary, I believe that Nam Pyoˇng-Gil treated the Jiuzhang suanshu as a very important historical document, which he intended to explain according to the new mathematical canon in both Qing China and Chosoˇn Korea, the Shuli jingyun. Thus the Kujang sulhae is an example of the endeavor of 19th-century Korean mathematicians to reinterpret ancient Chinese mathematical texts with their contemporary knowledge.  相似文献   

2.
This paper is a contribution to our knowledge of Greek geometric analysis. In particular, we investigate the aspect of analysis know as diorism, which treats the conditions, arrangement, and totality of solutions to a given geometric problem, and we claim that diorism must be understood in a broader sense than historians of mathematics have generally admitted. In particular, we show that diorism was a type of mathematical investigation, not only of the limitation of a geometric solution, but also of the total number of solutions and of their arrangement. Because of the logical assumptions made in the analysis, the diorism was necessarily a separate investigation which could only be carried out after the analysis was complete.  相似文献   

3.
Historians have always seen jabr (restoration) and muqābala (confrontation) as technical terms for specific operations in Arabic algebra. This assumption clashes with the fact that the words were used in a variety of contexts. By examining the different uses of jabr, muqābala, ikmāl (completion), and radd (returning) in the worked-out problems of several medieval mathematics texts, we show that they are really nontechnical words used to name the immediate goals of particular steps. We also find that the phrase al-jabr wa'l-muqābala was first used within the solutions of problems to mean al-jabr and/or al-muqābala, and from there it became the name of the art of algebra.  相似文献   

4.
5.
Medieval algebra is distinguished from other arithmetical problem-solving techniques by its structure and technical vocabulary. In an algebraic solution one or several unknowns are named, and via operations on the unknowns the problem is transferred to the artificial setting of an equation expressed in terms of the named powers, which is then simplified and solved. In this article we examine Diophantus? Arithmetica from this perspective. We find that indeed Diophantus? method matches medieval algebra in both vocabulary and structure. Just as we see in medieval Arabic and Italian algebra, Diophantus worked out the operations expressed in the enunciation of a problem prior to setting up a polynomial equation. Further, his polynomials were regarded as aggregations with no operations present.  相似文献   

6.
In this letter, the elementary result of Ramanujan for nested roots, also called continued or infinite radicals, for a given integer N, expressed by him as a simple sum of three parts (N=x+n+a) is shown to give rise to two distinguishably different expansion formulas. One of these is due to Ramanujan and surprisingly, it is this other formula, not given by Ramanujan, which is more rapidly convergent!  相似文献   

7.
8.
In this work we investigate the natural algebraic structure that arises on dual spaces in the context of quantified functional analysis. We show that the category of absolutely convex modules is obtained as the category of Eilenberg-Moore algebras induced by the dualization functor [−,R] on locally convex approach spaces. We also establish a dual adjunction between the latter category and the category of seminormed spaces.  相似文献   

9.
Snellius’s Fundamenta Arithmetica et Geometrica (1615) is much more than a Latin translation of Ludolph van Ceulen’s Arithmetische en Geometrische Fondamenten. Willebrord Snellius both adapted and commented on the Dutch original in his Fundamenta, and thus his Latin version can be read as a dialogue between representatives of two different approaches to mathematics in the early modern period: Snellius’s humanist approach and Van Ceulen’s practitioner’s approach. This article considers the relationship between the Dutch and Latin versions of the text and, in particular, puts some of their statements on the use of numbers in geometry under the microscope. In addition, Snellius’s use of the Fundamenta as an instrument to further his career is explained.  相似文献   

10.
11.
Bringing the meta-mathematics of Hero of Alexandria and Claudius Ptolemy into conversation for the first time, I argue that they employ identical rhetorical strategies in the introductions to Hero's Belopoeica, Pneumatica, Metrica and Ptolemy's Almagest. They each adopt a paradigmatic argument, in which they criticize the discourses of philosophers and declare epistemological supremacy for mathematics by asserting that geometrical demonstration is indisputable. The rarity of this claim—in conjunction with the paradigmatic argument—indicates that Hero and Ptolemy participated in a single meta-mathematical tradition, which made available to them rhetoric designed to introduce, justify, and bolster the value of mathematics.  相似文献   

12.
In a clear analogy with spherical geometry, Lambert states that in an “imaginary sphere” the sum of the angles of a triangle would be less than ππ. In this paper we analyze the role played by this imaginary sphere in the development of non-Euclidean geometry, and how it served Gauss as a guide. More precisely, we analyze Gauss’s reading of Bolyai’s Appendix in 1832, five years after the publication of Disquisitiones generales circa superficies curvas, on the assumption that his investigations into the foundations of geometry were aimed at finding, among the surfaces in space, Lambert’s hypothetical imaginary sphere. We also wish to show that the close relation between differential geometry and non-Euclidean geometry is already present in János Bolyai’s Appendix, that is, well before its appearance in Beltrami’s Saggio. From this point of view, one is able to answer certain natural questions about the history of non-Euclidean geometry; for instance, why Gauss decided not to write further on the subject after reading the Appendix.  相似文献   

13.
With an eye towards index theoretic applications we describe a Schubert like stratification on the Grassmannian of hermitian lagrangian spaces in CnCn. This is a natural compactification of the space of hermitian n×n matrices. The closures of the strata define integral cycles, and we investigate their intersection theoretic properties. We achieve this by blending Morse theoretic ideas, with techniques from o-minimal (or tame) geometry and geometric integration theory.  相似文献   

14.
In this extended study of Proposition VI, and its first corollary, in Book I of Newton's Principia, we clarify both the statements and the demonstrations of these fundamental results. We begin by tracing the evolution of this proposition and its corollary, to see how their texts may have changed from their initial versions. To prepare ourselves for some of the difficulties our study confronts, we then examine certain confusions which arise in two recent commentaries on Proposition VI. We go on to note other confusions, not in any particular commentary, but in Newton's demonstration and, especially, in his statement of the proposition. What, exactly, does Newton mean by a “body [that] revolves … about an immobile center”? By a “just-nascent arc”? By the “sagitta of the arc”? By the “centripetal force”? By “will be as”? We search for the mathematical meanings that Newton has in mind for these fragments of the Proposition VI statement, a search that takes us to earlier sections of the Principia and to discussions of the “method of first and last ratios,” centripetal force, and the second law of motion. The intended meaning of Proposition VI then emerges from the combined meanings of these fragments. Next we turn to the demonstration of Proposition VI, noting first that Newton's own argument could be more persuasive, before we construct a modern, more rigorous proof. This proof, however, is not as simple as one might expect, and the blame for this lies with the “sagitta of the arc,” Newton's measure of deflection in Proposition VI. Replacing the sagitta with a more natural measure of deflection, we obtain what we call Platonic Proposition VI, whose demonstration has a Platonic simplicity. Before ending our study, we examine the fundamental first corollary of Proposition VI. In his statement of this Corollary 1, Newton replaces the sagitta of Proposition VI by a not quite equal deflection from the tangent and the area swept out (which represents the time by Proposition I) by a not quite equal area of a triangle. These two approximations create small errors, but are these errors small enough? Do the errors introduced by these approximations tend to zero fast enough to justify these replacements? Newton must believe so, but he leaves this question unasked and unanswered, as have subsequent commentators on this crucial corollary. We end our study by asking and answering this basic question, which then allows us to give Corollary 1 a convincing demonstration.  相似文献   

15.
The proof of Proposition 9 in Archimedes’ On the Sphere and the Cylinder, Book i, contains an unproved statement that has been referred to as a “lacuna.” Most editors and experts in Archimedean texts have agreed on the existence of this gap and have offered different proofs for the statement, some of them with incomplete or even incorrect arguments. In this paper, I offer arguments of a mathematical, historical, and textual nature that show that it is not necessary to assume the presence of any gap in the text.  相似文献   

16.
Descartes' “multiplicative” theory of equations in the Géométrie (1637) systematically treats equations as polynomials set equal to zero, bringing out relations between equations, roots, and polynomial factors. We here consider this theory as a response to Peter Roth's suggestions in Arithmetica Philosophica (1608), notably in his “seventh-degree” problem set. These specimens of arithmetic-masterly problem design develop skills with multiplicative and other degree-independent techniques. The challenges were fine-tuned by introducing errors disguised as printing errors. During Descartes' visit to Germany in 1619–1622, he probably worked with Johann Faulhaber (1580–1635) on these problems; they are discussed in Faulhaber's Miracula Arithmetica (1622), which also looks forward to fuller publication, probably by Descartes.  相似文献   

17.
This article studies the legacy in the West of Abū al-Wafā’s Book on those geometric constructions which are necessary for craftsmen. Although two-thirds of the geometric constructions in the text also appear in Renaissance works, a joint analysis of original solutions, diagram lettering, and probability leads to a robust finding of independent discovery. The analysis shows that there is little chance that the similarities between the contents of Abū al-Wafā’s Book and the works of Tartaglia, Marolois, and Schwenter owe anything to historical transmission. The commentary written by Kamāl al-Dīn Ibn Yūnus seems to have had no Latin legacy, either.  相似文献   

18.
Topology, or analysis situs, has often been regarded as the study of those properties of point sets (in Euclidean space or in abstract spaces) that are invariant under “homeomorphisms.” Besides the modern concept of homeomorphism, at least three other concepts were used in this context during the late 19th and early 20th centuries, and regarded (by various mathematicians) as characterizing topology: deformations, diffeomorphisms, and continuous bijections. Poincaré, in particular, characterized analysis situs in terms of deformations in 1892 but in terms of diffeomorphisms in 1895. Eventually Kuratowski showed in 1921 that in the plane there can be a continuous bijection of P onto Q, and of Q onto P, without P and Q being homeomorphic.  相似文献   

19.
We give some contributions to the theory of “max-min convex geometry”, that is, convex geometry in the semimodule over the max-min semiring Rmax,min=R∪{-,+}. We introduce “elementary segments” that generalize from n=2 the horizontal, vertical or oblique segments contained in the main bisector of . We show that every segment in is a concatenation of a finite number of elementary subsegments (at most 2n-1, respectively at most 2n-2, in the case of comparable, respectively, incomparable, endpoints x,y). In this first part we study “max-min segments”, and in the subsequent second part (submitted) we study “max-min semispaces” and some of their relations to “max-min convex sets”.  相似文献   

20.
This paper is a natural extension and continuation of the authors' studies of the astronomical dating problem of Ptolemy's famous Almagest. In previous papers, the authors suggested and developed a new geometrical-statistical method for dating ancient star catalogues. This method was then applied to Ptolemy's Almagest. The results obtained do not confirm the traditional dating of the Almagest (2nd century AD or 2nd century BC) but shift it to the epoch AD 600–1300. In this paper, we extend our analysis to other parts of the Almagest and study the dating problem for series of lunar eclipses described in the Almagest and for the covering of stars by planets. The results obtained completely agree with our previous results and give the same time interval, AD 600–1300.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号