首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
近年来溶液中残留偶极耦合常数被用来获取生物大分子化学键之间相对取向等长程构象约束条件,用于计算或优化蛋白质及其复合物的三维空间结构. 介绍了用异核多维NMR技术测量残留偶极耦合常数的方法,及其在蛋白质结构计算中的一些应用:优化蛋白质溶液结构,评价蛋白质结构质量,确定蛋白质结构域取向,获取有关配体的构象和取向的信息,在缺乏NOE数据时构建蛋白质结构等.   相似文献   

2.
A method for accurately measuring HN–Hα residual dipolar couplings is described. Using this technique, both the sign and magnitude of the coupling can be determined easily. Residual dipolar coupling between HN(i)–Hα(i) and HN(i)–Hα(i-1) were measured for the FK506 binding protein complexed to FK506. The experimental values were in excellent agreement with predictions based on an X-ray crystal structure of the protein/ligand complex, suggesting that these residual dipolar couplings will provide accurate structural constraints for the refinement of protein structures determined by NMR.  相似文献   

3.
In the work reported herein we define a structure validation factor that depends on protein backbone 15N relaxation rates. This is an alternative method to the previously defined quality factors derived from anisotropic chemical shifts or residual dipolar couplings. We have used the structure dependence of 15N relaxation rates of anisotropically tumbling proteins to calculate this structure diagnosis factor and have used it to demonstrate the improvement of protein structures refined with residual dipolar couplings.  相似文献   

4.
Two-dimensional 1H/13C polarization inversion spin exchange at the magic angle experiments were applied to single crystal samples of amino acids to demonstrate their potential utility on oriented samples of peptides and proteins. High resolution is achieved and structural information obtained on backbone and side chain sites from these spectra. A triple-resonance experiment that correlates the 1H–13Cα dipolar coupling frequency with the chemical shift frequencies of the α-carbon, as well as the directly bonded amide 15N site, is also demonstrated. In this experiment the large 1H–13Cα heteronuclear dipolar interaction provides an independent frequency dimension that significantly improves the resolution among overlapping 13C resonances of oriented polypeptides, while simultaneously providing measurements of the 13Cα chemical shift, 1H–13C dipolar coupling, and 15N chemical shift frequencies and angular restraints for backbone structure determination.  相似文献   

5.
The accurate measurement of small spin–spin coupling constants in macromolecules dissolved in a liquid crystalline phase is important in the context of molecular structure investigation by modern liquid state NMR. A new spin-state-selection filter, DIPSAP, is presented with significantly reduced sensitivity to J-mismatch of the filter delays compared to previously proposed pulse sequences. DIPSAP presents an attractive new approach for the accurate measurement of small spin–spin coupling constants in molecules dissolved in anisotropic solution. Application to the measurement of 15N–13C′ and 1HN13C′ coupling constants in the peptide planes of 13C, 15N labeled proteins demonstrates the high accuracy obtained by a DIPSAP-based experiment.  相似文献   

6.
A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4′P and 3JH3′P scalar couplings in large 13C-labeled nucleic acids and in DNA–protein complexes. This experiment makes use of the fact that 1H–13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4′P and 3JH3′P are related via Karplus-type functions with the phosphodiester torsion angles β and ε, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein–DNA complex.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号