首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This paper is concerned with the existence and stability of periodic traveling curved fronts for reaction-diffusion equations with time-periodic bistable nonlinearity in two-dimensional space. By constructing supersolution and subsolution, we prove the existence of periodic traveling wave fronts. Furthermore, we show that the front is globally stable.  相似文献   

2.
In this paper, we first study the existence of transition fronts (generalized traveling fronts) for reaction-diffusion equations with the spatially heterogeneous bistable nonlinearity. By constructing sub-solution and super-solution we then show that transition fronts are globally exponentially stable for the solutions of the Cauchy problem. Furthermore, we prove that transition fronts are unique up to translation in time by using the monotonicity in time and the exponential decay of such transition fronts.  相似文献   

3.
This paper is concerned with the multidimensional asymptotic stability of V-shaped traveling fronts in the Allen-Cahn equation under spatial decaying initial values.We frst show that V-shaped traveling fronts are asymptotically stable under the perturbations that decay at infnity.Then we further show that there exists a solution that oscillates permanently between two V-shaped traveling fronts,which indicates that V-shaped traveling fronts are not always asymptotically stable under general bounded perturbations.Our main technique is the supersolutions and subsolutions method coupled with the comparison principle.  相似文献   

4.
研究了一类一维空间周期格上的具有时滞和全局交互作用的微分系统的front⁃like整体解.通过建立适当的比较原理,并融合不同方向的波前解与连接稳定态和不稳定态的空间周期解,构造了front⁃like整体解并证明了一些定性性质.与波前解相比,front⁃like整体解能够展示出新的动力学行为.  相似文献   

5.
This paper is concerned with the stability of traveling wave fronts for a coupled system of non-local delayed lattice differential equations with a quiescent stage. It shows that under certain conditions all non-critical traveling wave fronts are globally exponentially stable, and critical ftraveling wave fronts are globally algebraically stable by applying the weighted energy method and the semi-discrete Fourier transform.  相似文献   

6.
We investigate the large time behavior of solutions of reaction–diffusion equations with general reaction terms in periodic media. We first derive some conditions which guarantee that solutions with compactly supported initial data invade the domain. In particular, we relate such solutions with front-like solutions such as pulsating traveling fronts. Next, we focus on the homogeneous bistable equation set in a domain with periodic holes, and specifically on the cases where fronts are not known to exist. We show how the geometry of the domain can block or allow invasion. We finally exhibit a periodic domain on which the propagation takes place in an asymmetric fashion, in the sense that the invasion occurs in a direction but is blocked in the opposite one.  相似文献   

7.
We obtain some existence results for traveling wave fronts and slowly oscillatory spatially periodic traveling waves of planar lattice differential systems with delay. Our approach is via Schauder's fixed-point theorem for the existence of traveling wave fronts and via S1-degree and equivarant bifurcation theory for the existence of periodic traveling waves. As examples, the obtained abstract results will be applied to a model arising from neural networks and explicit conditions for traveling wave fronts and global continuation of periodic waves will be obtained.  相似文献   

8.
This paper deals with entire solutions of periodic lattice dynamical systems. Unlike homogeneous problems, the periodic equation studied here lacks symmetry between increasing and decreasing pulsating traveling fronts, which affects the construction of entire solutions. In the bistable case, the existence, uniqueness and Liapunov stability of entire solutions are proved by constructing different sub- and supersolutions. In the monostable case, the existence and asymptotic behavior of spatially periodic solutions connecting two steady states are first established. Some new types of entire solutions are then constructed by combining leftward and rightward pulsating traveling fronts with different speeds and a spatially periodic solution. Various qualitative features of the entire solutions are also investigated.  相似文献   

9.
This paper is devoted to the study of traveling fronts of reaction-diffusion equations with periodic advection in the whole plane R2. We are interested in curved fronts satisfying some “conical” conditions at infinity. We prove that there is a minimal speed c such that curved fronts with speed c exist if and only if cc. Moreover, we show that such curved fronts are decreasing in the direction of propagation, that is, they are increasing in time. We also give some results about the asymptotic behaviors of the speed with respect to the advection, diffusion and reaction coefficients.  相似文献   

10.
This paper is concerned with the analysis of speed-up of reaction-diffusion-advection traveling fronts in infinite cylinders with periodic boundary conditions. The advection is a shear flow with a large amplitude and the reaction is nonnegative, with either positive or zero ignition temperature. The unique or minimal speeds of the traveling fronts are proved to be asymptotically linear in the flow amplitude as the latter goes to infinity, solving an open problem from Berestycki (Nonlinear PDEs in condensed matter and reactive flows, Kluwer, Doordrecht, 2003). The asymptotic growth rate is characterized explicitly as the unique or minimal speed of traveling fronts for a limiting degenerate problem, and the convergence of the regular traveling fronts to the degenerate ones is proved for positive ignition temperatures under an additional Hörmander-type condition on the flow.  相似文献   

11.
This paper studies the multidimensional stability of traveling fronts in monostable reaction-difusion equations,including Ginzburg-Landau equations and Fisher-KPP equations.Eckmann and Wayne(1994)showed a one-dimensional stability result of traveling fronts with speeds c c(the critical speed)under complex perturbations.In the present work,we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions(n=2,3),employing weighted energy methods.  相似文献   

12.
The purpose of this paper is to study the traveling wave solutions of a nonlocal reaction‐diffusion system with delay arising from the spread of an epidemic by oral‐faecal transmission. Under monostable and quasimonotone it is well known that the system has a minimal wave speed c* of traveling wave fronts. In this paper, we first prove the monotonicity and uniqueness of traveling waves with speed c ?c ?. Then we show that the traveling wave fronts with speed c >c ? are exponentially asymptotically stable.  相似文献   

13.
This paper studies the multidimensional stability of traveling fronts in monostable reaction-difusion equations,including Ginzburg-Landau equations and Fisher-KPP equations.Eckmann and Wayne(1994)showed a one-dimensional stability result of traveling fronts with speeds c c(the critical speed)under complex perturbations.In the present work,we prove that these traveling fronts are also asymptotically stable subject to complex perturbations in multiple space dimensions(n=2,3),employing weighted energy methods.  相似文献   

14.
This paper deals with entire solutions and the interaction of traveling wave fronts of bistable reaction-advection-diffusion equation with infinite cylinders. Assume that the equation admits three equilibria: two stable equilibria 0 and 1, and an unstable equilibrium θ. It is well known that there are different wave fronts connecting any two of those three equilibria. By considering a combination of any two of those different traveling wave fronts and constructing appropriate subsolutions and supersolutions, we establish three different types of entire solutions. Finally, we analyze a model for shear flows in cylinders to illustrate our main results.  相似文献   

15.
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka–Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c? such that for each wave speed c?c?, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c<c? are asymptotically stable in certain sense. In addition, we establish the nonexistence of time periodic traveling waves for nonzero speed c>c?.  相似文献   

16.
This paper deals with the traveling wave fronts of a delayed population model with nonlocal dispersal. By constructing proper upper and lower solutions, the existence of the traveling wave fronts is proved. In particular, we show such a traveling wave front is strictly monotone.  相似文献   

17.
This paper is concerned with entire solutions ( t ∈ R) for bistable reaction-advection-diffusion equations in heterogeneous media. By using traveling curved fronts connecting a constant unstable stationary state and a stable stationary state, we proved that there exist entire solutions behaving as two traveling curved fronts coming from opposite directions, and approaching each other. Furthermore, we prove that such an entire solution is unique and Liapunov stable. The key technique is to characterize the asymptotic behavior of solutions at infinity in term of appropriate subsolutions and supersolutions.  相似文献   

18.
Solitary and Periodic Solutions of Nonlinear Nonintegrable Equations   总被引:2,自引:0,他引:2  
The singular manifold method and partial fraction decomposition allow one to find some special solutions of nonintegrable partial differential equations (PDE) in the form of solitary waves, traveling wave fronts, and periodic pulse trains. The truncated Painlevé expansion is used to reduce a nonlinear PDE to a multilinear form. Some special solutions of the latter equation represent solitary waves and traveling wave fronts of the original PDE. The partial fraction decomposition is used to obtain a periodic wave train solution as an infinite superposition of the "corrected" solitary waves.  相似文献   

19.
We establish the existence of pulsating type entire solutions of reaction-advection-diffusion equations with monostable nonlinearities in a periodic framework. Here the nonlinearities include the classic KPP case. The pulsating type entire solutions are defined in the whole space and for all time tR. By studying a pulsating traveling front connecting a constant unstable stationary state to a stable stationary state which is allowed to be a positive function, we proved that there exist pulsating type entire solutions behaving as two pulsating traveling fronts coming from both directions, and approaching each other. The key techniques are to characterize the asymptotic behavior of the solutions as t→− in terms of appropriate subsolutions and supersolutions.  相似文献   

20.
This paper is concerned with the global stability of traveling wave fronts of a non-local delayed lattice differential equation. By the comparison principle together with the semi-discrete Fourier transform, we prove that, all noncritical traveling wave fronts are globally stable in the form of t−1/αeμt for some constants μ>0 and 0<α≤2, and the critical traveling wave fronts are globally stable in the algebraic form of t−1/α.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号