首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of hydrogen on the magnetic exchange coupling between iron layers through vanadium spacer layers has been studied with magneto-optical Kerr effect experiments in Fe(3)/V(x) superlattices. Here x refers to the number of V monolayers varying from 11 to 16 and the Fe layer thickness is fixed at three monolayers. Without hydrogen the superlattice is antiferromagnetic (AFM) for x between 12 and 14 and ferromagnetic (FM) in all other cases. With hydrogen loading the coupling can be switched from AFM to FM and vice versa. As previously observed with neutron reflectivity measurements (Hjörvarsson et al., Phys. Rev. Lett. 79 (1997) 901) the change of the interlayer coupling upon hydrogen uptake is not simply due to the expansion of the non-magnetic vanadium spacer layer but more likely to the distortion of the Fermi surface. Bilinear and biquadratic exchange couplings can be recognized by the magnetic hysteresis loops and their coupling energies have been extracted by fits to the curves. For all samples the easy axis of the magnetization is in the plane without any preferred in-plane direction. Hydrogen loading does not affect the magnetic anisotropy of these samples.  相似文献   

2.
We have studied alloying of the nonmagnetic spacer layer with a magnetic material as a method of tuning the interlayer coupling in magnetic multilayers. We have specifically studied the Fe/V(100) system by alloying the spacer V with various amounts of Fe. For some Fe concentrations in the spacer, it is possible to create a competition between antiferromagnetic Ruderman-Kittel-Kasuya-Yoshida exchange and direct ferromagnetic exchange coupling. The exchange coupling and transport properties for a large span of systems with different spacer concentrations and thicknesses were calculated and measured experimentally and good agreement between observations and theory was observed. A reduction in magnetoresistance of about 50% was observed close to the switchover from antiferromagnetic to ferromagnetic coupling.  相似文献   

3.
自旋转向相变中的条纹磁畴研究   总被引:1,自引:0,他引:1  
吴义政 《物理》2005,34(2):104-108
用光激发电子显微镜研究了Fe/Ni铁磁膜和Co/Cu/Fe/Ni磁耦合膜中的条纹磁畴.实验发现:在Fe/Ni体系中,条纹磁畴宽度随着铁层厚度趋近于自旋转向相变点呈指数下降;在Co/Cu/Fe/Ni体系中,Fe/M层中的条纹磁畴会沿着钴层磁矩的方向排列,其磁畴宽度会随着Co-Fe/Ni间的层间耦合强度呈指数下降.理论上推导出条纹磁畴随着磁各向异性能和层间耦合强度变化的统一公式,而实验结果与理论符合得非常好。  相似文献   

4.
Using the coupled-cluster method and the rotation-invariant Green's function method, we study the influence of the interlayer coupling Jperpendicular on the magnetic ordering in the ground state of the spin-1/2 J1-J2 frustrated Heisenberg antiferromagnet (J1-J2 model) on the stacked square lattice. In agreement with known results for the J1-J2 model on the strictly two-dimensional square lattice (Jperpendicular=0), we find that the phases with magnetic long-range order at small J2Jc2 are separated by a magnetically disordered (quantum paramagnetic) ground-state phase. Increasing the interlayer coupling Jperpendicular >0, the parameter region of this phase decreases, and, finally, the quantum paramagnetic phase disappears for quite small Jperpendicular approximately (0.2-0.3)J1.  相似文献   

5.
Magnetic stripe domains in the spin reorientation transition region are investigated in (Fe/Ni)/Cu(001) and Co/Cu/(Fe/Ni)/Cu(001) using photoemission electron microscopy. For (Fe/Ni)/Cu(001), the stripe domain width decreases exponentially as the Fe/Ni film approaches the spin reorientation transition point. For Co/Cu/(Fe/Ni)/Cu(001), the Fe/Ni stripe orientation is aligned with the Co in-plane magnetization, and the stripe domain width decreases exponentially with increasing the interlayer coupling between the Fe/Ni and Co films. By considering magnetic stripes within an in-plane magnetic field, we reveal a universal dependence of the stripe domain width on the magnetic anisotropy and on the interlayer coupling.  相似文献   

6.
We have studied different aspects of the magnetic behavior of Fe(5 nm)/MnAs(100 nm) bilayers epitaxially grown on GaAs(1 0 0). Ferromagnetic resonance (FMR) measurements were performed in order to characterize the magnetic anisotropies of the films and the interlayer coupling between them. The chemical composition of the interface was investigated by X-ray photoemission spectroscopy (XPS).  相似文献   

7.
We review selected results concerning the interlayer exchange coupling in Fe/Si x Fe1−x , Fe/Ge and Co/Si layered structures. Among the ferromagnet/semiconductor systems, Fe/Si structures are the most popular owing to their strong antiferromagnetic interlayer coupling. We show that such interaction depends not only on semiconducting sublayer thickness, but also on deposition techniques and on the chemical composition of the sublayer as well. In similar heterostructures e.g. Fe/Ge, antiferromagnetic coupling was observed only in ion-beam deposited trilayers at low temperatures. In contrast, in Fe/Ge multilayers deposited by sputtering, no such coupling was found. However, when the Ge is partially substituted by Si, antiferromagnetic interlayer coupling appears. For Co/Si multilayers, we observed a very weak exchange coupling and its oscillatory behavior. The growth of Co on Si occurs in an island growth mode. The evolution of magnetic loop shapes can be successfully explained by the interplay between interlayer coupling and anisotropy terms.  相似文献   

8.
We investigate the magnetic properties of a (100) oriented [Fe(1.7 nm)/Cr(8.4 nm)](10) superlattice by means of perturbed angular correlation spectroscopy. The magnetic ordering in the Cr layers is obtained by measuring the magnetic hyperfine interaction at implanted 111Cd nuclear probes. We identify dynamic antiferromagnetic spin fluctuations in the Cr layers and show that it gives rise to the biquadratic interlayer coupling.  相似文献   

9.
The relation between the interlayer exchange coupling and magnetic order is addressed, using Fe/V(0 0 1) superlattices as a model system. Large decrease in the ordering temperature (Tc) is observed with decreasing interlayer exchange coupling. The effective exponents of the magnetization were determined to be larger than 0.5 for all the samples, which is strongly deviating from the classical values of both two- and three-dimensional systems. This effect can partially be ascribed to the presence of boundaries, invoked by the finite number of magnetic layers.  相似文献   

10.
The magnetization distribution, its energetic characterization by the interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt multilayers are investigated using density functional theory combined with the direct method to determine phonon frequencies. It is found that ferromagnetic order between consecutive Fe layers is favoured, with the enhanced magnetic moments at the interface. The bilinear and biquadratic coupling coefficients between Fe layers are shown to saturate fast with increasing thickness of nonmagnetic Pt layers which separate them. The phonon calculations demonstrate a rather strong dependence of partial iron phonon densities of states on the actual position of Fe monolayer in the multilayer structure.  相似文献   

11.
We present calculations of the non-collinear magnetic structure in Fe/Cr superlattices having imperfect interfaces modeled by considering atomic steps in the Cr layers and Fe/Cr interfacial ordered compounds. The interlayer couplings are obtained directly from self-consistent tight binding band structure calculations. We show that the bilinear–biquadratic expression for the coupling energy fits nicely the calculated interlayer couplings curves.  相似文献   

12.
Using an iteration technique, we obtain exact expressions for the free energy and the magnetization of an Ising model on a two-layer Bethe lattice with intralayer coupling constants J1 and J2 for the first and the second layer, respectively, and interlayer coupling constant J3 between the two layers; the Ising spins also couple with external magnetic fields, which are different in the two layers. We obtain exact phase diagrams for the system and find that when /J3/-->0, DeltaT(c) identical with[T(c)(J3)-T(c)(0)]/T(c)(0) approximately [J3]/J(1)/(1/psi), where T(c)(J3) is the phase-transition temperature for the system with interlayer coupling constant J3 and the shift exponent psi is 1 for J(1)=J(2) and is 0.5 for J1 not equal to J2. Such results are consistent with predictions of a scaling theory. We also derive equations for DeltaT(c) when /J3/ approaches infinity.  相似文献   

13.
We have investigated the one dimensional Fe/Pd, Fe/Cu, Fe/Ag, and Fe/Au multilayered nanowire systems by using first principles density functional theory. Our study reveals a gain in the binding energies of these heterostructures regardless of nature of the spacer. We have identified the electronic structure dependent enhancement of magnetic properties, and a switching behavior of the interlayer exchange coupling, with respect to the nature and dimension of the nonmagnetic spacer layer. We observe a down-spin (minority) d-charge depletion at the Fe site and a up-spin d-charge gain at Pd site in Fe/Pd nanowire which accounts for the enhanced magnetic moment of the Fe atoms and the ferromagnetic behavior of the Pd, in contrast to the paramagnetism appearing in their bulk state. We find the interlayer exchange coupling, I ex , in Fe/Pd nanowire to be very strong, and it shows a change of sign and a decrease in magnitude with increase in Pd spacer width. On the other hand, I ex shows an unusual increasing trend with increase in the Cu spacer layer thickness.  相似文献   

14.
Magnetic interactions involving ferromagnetic layers separated by an insulating barrier have been studied experimentally on a fully epitaxial hard-soft magnetic tunnel junction: Fe/MgO/Fe/Co. For a barrier thickness below 1 nm, a clear antiferromagnetic interaction is observed. Moreover, when reducing the MgO thickness from 1 to 0.5 nm, the coupling strength increases up to J=-0.26 erg.cm(-2). This behavior, well fitted by theoretical models, provides an unambiguous signature of the interlayer exchange coupling by spin-polarized quantum tunneling.  相似文献   

15.
The antiferromagnetic coupling at the Fe/Cr interfaces, inferred from the orientation of the Cr magnetic moments, is used to estimate the magnetic disorder resulting from the interfacial roughness in Fe/Cr multilayers. A crossover from in-plane to out-of-plane orientation of Cr moments depends on the energy cost in either case: (i) to break the interfacial Fe–Cr antiferromagnetic coupling or (ii) having sites with frustrated Cr–Cr antiferromagnetic coupling in the Cr interlayers. A quantitative model of the magnetic frustration due to interfacial disorder in Fe/Cr multilayer systems is described. The step edge density, or terrace size, required to break the interfacial Fe–Cr coupling and destroy the Fe–Fe interlayer exchange coupling is estimated.  相似文献   

16.
We study interlayer exchange coupling in epitaxial Fe/Fe(0.56)Si(0.44)/Fe trilayers. Iron-silicide spacers with high structural and compositional homogeneity for thicknesses up to 34 A are grown by coevaporation from two electron-beam sources. The coupling strength oscillates with spacer thickness for temperatures from 20 to 300 K with two antiferromagnetic maxima at 12 and 26 A, and it clearly increases with decreasing temperature down to 80 K. We conclude that the coupling across ordered Fe(1-x)Si(x) ( x approximately 0.5) is described by the conventional theory of interlayer coupling across metallic spacers.  相似文献   

17.
We have studied the change of the magnetic saturation of (Fen/Vm)30 superlattices (30 periods with n monolayers of Fe and m monolayers of V) upon loading with hydrogen using a highly sensitive Faraday balance and in situ loading with hydrogen. We find that the measured magnetic saturation moment for all samples increases with the hydrogen. The measured magnetic saturation moment for all samples increases with the hydrogen concentration. For the superlattice (Fe3/V11)30 we find the maximum increase, corresponding to a change of the atomic magnetic moments of +0.35 μB/Fe atom. We attribute this remarkable effect to a change of the Fe and V magnetic moments at the interfaces caused by the charge transfer from the hydrogen atoms to the vanadium d bands.  相似文献   

18.
The interplay between interfacial disorder and the antiferromagnetic order in Cr leads to complex behavior in Fe/Cr multilayers. Measurements of interlayer coupling are discussed for samples with different amounts of disorder ranging from optimally fabricated trilayers of Fe/Cr/Fe on Fe(0 0 1) whiskers, to trilayers with increasing degrees of interfacial roughness, and finally to superlattices of Fe/Cr. The coupling of ferromagnets through noble-metal spacer layers can be described by a model that consists of bilinear coupling averaged over thickness fluctuations and extrinsic biquadratic coupling induced by the thickness fluctuations. This, the conventional model, also describes much of the behavior observed for Fe/Cr multilayers. However, in this case, the antiferromagnetism in Cr leads to results not explained by the conventional model. For nearly ideal interfaces, the Fe–Cr coupling can induce order in Cr, modifying the temperature dependence of the interlayer coupling. In addition, interfacial disorder can frustrate the antiferromagnetic order in the Cr, leading to a variety of ordered states which have been observed by neutron scattering. Each of these ordered states, in turn modifies the interlayer coupling in unexpected ways. The different ways in which the systems minimize the frustration can explain the experimental results.  相似文献   

19.
The magnetic phase diagram of the Fe/Cr/Fe three-layer structure with almost ideal interlayer boundaries was constructed. The effective interlayer interaction in this structure was described by the “half-angle coupling” model. Various system configurations were analyzed taking into account crystalline anisotropy, and the ground state of the system was determined. The behavior of the structure in an external magnetic field applied along easy and hard magnetic axes was studied. The magnetization curves M(H) characteristic of structures with various interface roughness parameter and interlayer exchange values were described and analyzed. The experimental situation is discussed.  相似文献   

20.
A mechanism of the interlayer exchange coupling in layered structures of the Fe/Cr(001) type with rough interfaces is proposed. The theory is based on a model of the charge-induced spin density wave (SDW) formed in the chromium layer. It is shown that the effective magnetic coupling between thick ferromagnetic layers arises due to variations of the SDW vector orientation in the antiferromagnetic layer over a characteristic length ζ determined by the exchange stiffness of chromium. A general expression for the effective magnetic coupling energy E(ψ) as a function of the angle ψ between magnetic moments of the ferromagnetic layers is obtained and numerically analyzed for an arbitrary value of the parameter ρζ, where ρ is the density of monoatomic steps on the interface. For ρζ?1, the form of E(ψ) is typical of a model with the “ biquadratic” interaction, while in the case of ρζ?1, the dependence obtained differs significantly. The proposed mechanism is used to interpret the results of measurements of the interlayer exchange coupling in Fe/Cr(001) structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号