首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

2.
We have systematically investigated the global phase diagram for Li{x}M{y}HfNCl (M: molecule), demonstrating the independent controllability of carrier density x and interlayer spacing d. In LixHfNCl, the superconducting phase with almost constant T{c} of 20 K prevails for 0.15相似文献   

3.
We study phase ordering on networks and we establish a relation between the exponent a(x) of the aging part of the integrated auto-response function and the topology of the underlying structures. We show that a(x) > 0 in full generality on networks which are above the lower critical dimension d(L), i.e., where the corresponding statistical model has a phase transition at finite temperature. For discrete symmetry models on finite ramified structures with T(c) = 0, which are at the lower critical dimension d(L), we show that a(x) is expected to vanish. We provide numerical results for the physically interesting case of the 2 - d percolation cluster at or above the percolation threshold, i.e., at or above d(L), and for other networks, showing that the value of a(x) changes according to our hypothesis. For O(N) models we find that the same picture holds in the large-N limit and that a(x) only depends on the spectral dimension of the network.  相似文献   

4.
A series of K(0.8)Fe(2-δ-x)Zn(x)Se(2) single-crystal samples with nominal compositions 0?≤?x?≤?0.05 were grown and their physical properties were measured in order to study the effect of Zn impurity. It is found that the Zn impurity (x?≤?0.02) does not affect the superconducting transition temperature T(c) significantly. Meanwhile the hump in resistivity which corresponds to the transition from the insulating to metallic phase quickly shifts towards low temperatures. The results imply that there should be a phase separation in this system and Zn impurity causes the enhancement of the insulating phase. The negligible effect of Zn impurity on T(c) suggests an s-wave pairing in the superconducting phase. Meanwhile there is a possibility that the Zn impurity may selectively enter into the insulting phase.  相似文献   

5.
Effects of magnetic fields (applied along the c axis) on static spin correlation were studied for the electron-doped superconductors Pr1-xLaCexCuO4 with x=0.11 (T(c)=25 K) and x=0.15 (T(c)=16 K) by neutron-scattering measurements. In the x=0.11 sample, which is located near the antiferromagnetic (AF) and superconducting phase boundary, a commensurate magnetic order develops below around T(c) at zero field. Upon applying a magnetic field up to 9 T both the magnetic intensity and the onset temperature of the order increase with the maximum field effect at approximately 5 T. In contrast, in the overdoped x=0.15 sample any static AF order is neither observed at zero field nor induced by the field up to 8.5 T. Difference and similarity of the field effect between the hole- and electron-doped high-T(c) cuprates are discussed.  相似文献   

6.
We study finite-temperature phase transitions in a two-dimensional boson Hubbard model with zero-point quantum fluctuations via Monte Carlo simulations of a quantum rotor model and construct the corresponding phase diagram. Compressibility shows a thermally activated gapped behavior in the insulating regime. Finite-size scaling of the superfluid stiffness clearly shows the nature of the Kosterlitz-Thouless transition. The transition temperature T(c) confirms a scaling relation T(c) proportional, rho(0)(x), with x=1.0. Some evidence of anomalous quantum behavior at low temperatures is presented.  相似文献   

7.
A detailed study of the paramagnetic to ferromagnetic phase transition in the one-band Hubbard model in the presence of binary-alloy disorder is presented. The influence of the disorder (with concentrations x and 1-x of the two alloy ions) on the Curie temperature T(c) is found to depend strongly on electron density n. While at high densities, n>x, the disorder always reduces T(c); at low densities, n相似文献   

8.
Temperature- and x-dependent Raman scattering studies of the charge-density-wave (CDW) amplitude modes in Cu(x)TiSe(2) show that the amplitude mode frequency omega(0) exhibits identical power-law scaling with the reduced temperature T/T(CDW) and the reduced Cu content x/x(c), i.e., omega(0) approximately (1-p)(0.15) for p=T/T(CDW) or x/x(c), suggesting that mode softening is independent of the control parameter used to approach the CDW transition. We provide evidence that x-dependent mode softening in Cu(x)TiSe(2) is associated with the reduction of the electron-phonon coupling constant, and that x-dependent "quantum" (T approximately 0) mode softening suggests the presence of a quantum critical point within the superconductor phase of Cu(x)TiSe(2).  相似文献   

9.
X-ray diffraction, electrical resistivity, magnetic susceptibility, and specific heat measurements on Ce(1-x)Yb(x)CoIn5 (0≤x≤1) reveal that many of the characteristic features of the x=0 correlated electron state are stable for x≤0.775 and that phase separation occurs for x>0.775. The stability of the correlated electron state is apparently due to cooperative behavior of the Ce and Yb ions, involving their unstable valences. Low-temperature non-Fermi liquid behavior is observed and varies with x, even though there is no readily identifiable quantum critical point. The superconducting critical temperature T(c) decreases linearly with x towards 0 K as x→1, in contrast with other HF superconductors where T(c) scales with T(coh).  相似文献   

10.
The elastic and anelastic properties of three different samples of Fe(x)O have been determined in the frequency range 0.1-2 MHz by resonant ultrasound spectroscopy and in the range 0.1-50 Hz by dynamic mechanical analysis in order to characterize ferroelastic aspects of the magnetic ordering transition at T(N) ~ 195 K. No evidence was found of separate structural and magnetic transitions but softening of the shear modulus was consistent with the involvement of bilinear coupling, λe(4)q, between a symmetry-breaking strain, e(4), and a structural order parameter, q. Unlike a purely ferroelastic transition, however, C(44) does not go to zero at the critical temperature, T*(c), due to the intervention of the magnetic ordering at a higher temperature. The overall pattern of behaviour is nevertheless consistent with what would be expected for a system with separate structural and magnetic instabilities, linear-quadratic coupling between the structural (q) and magnetic (m) driving order parameters, λqm(2), and T(N) > T*(c). Comparison with data from the literature appears to confirm the same pattern in MnO and NiO, with a smaller difference between T(N) and T*(c) in the former and a larger difference in the latter. Strong attenuation of acoustic resonances at high frequencies and a familiar pattern of attenuation at low frequencies suggest that twin walls in the rhombohedral phase have typical ferroelastic properties. Acoustic dissipation in the stability field of the cubic phase is tentatively attributed to anelastic relaxations of the defect ordered structure of non-stoichiometric wüstite or of the interface between local regions of wüstite and magnetite, with a rate controlling step determined by the diffusion of iron.  相似文献   

11.
Low energy polarized electronic Raman scattering of the electron-doped superconductor Nd2-x Ce x CuO4 ( x = 0.15, T(c) = 22 K) has revealed a nonmonotonic d(x(2)-y(2)) superconducting order parameter. It has a maximum gap of 4.4k(B)T(c) at Fermi surface intersections with an antiferromagnetic Brillouin zone (the "hot spots") and a smaller gap of 3.3k(B)T(c) at fermionic Brillouin zone boundaries. The gap enhancement in the vicinity of the hot spots emphasizes the role of antiferromagnetic fluctuations and the similarity in the origin of superconductivity for electron- and hole-doped cuprates.  相似文献   

12.
The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa(2)Cu(3)O (x) single crystals and Monte Carlo simulations of the anisotropic 3D- XY model. We directly show that T(c) of underdoped YBa(2)Cu(3)O (x) is strongly suppressed from its mean-field value (T(MF)(c)) by phase fluctuations of the superconducting order parameter. For overdoped YBa(2)Cu(3)O (x) fluctuation effects are greatly reduced and T(c) approximately T(MF)(c). We find that T(MF)(c) exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.  相似文献   

13.
We describe a novel phenomenon in which vortices are produced due to resonant oscillations of a scalar field which is driven by a periodically varying temperature T, with T remaining much below the critical temperature T(c). Also, in a rapid heating of a localized region to a temperature below T(c), far separated vortex and antivortex can form. We compare our results with recent models of defect production during reheating after inflation. We also discuss possible experimental tests of our predictions of topological defect production without ever going through a phase transition.  相似文献   

14.
The superconducting transition temperature T(c) of bilayers comprising underdoped La(2-x)Sr(x)CuO(4) films capped by a thin heavily overdoped metallic La(1.65)Sr(0.35)CuO(4) layer, is found to increase with respect to T(c) of the bare underdoped films. The highest T(c) is achieved for x=0.12, close to the "anomalous" 1/8 doping level, and exceeds that of the optimally doped bare film. Our data suggest that the enhanced superconductivity is confined to the interface between the layers. We attribute the effect to a combination of the high pairing scale in the underdoped layer with an enhanced phase stiffness induced by the overdoped film.  相似文献   

15.
We report the occurrence of kinetic arrest of the first-order phase transition from R3c to Pbnm in supercooled La(x)MnO(3±δ) (x = 1 and 0.9, i.e. δ > 0.125). Structural studies have been done, employing low temperature transmission electron microscopy (LT-TEM) and low temperature x-ray diffraction (LT-XRD) techniques. No phase transformation was observed even in La(x)MnO(3±δ) aged for ~12 h at 98 K. The evidence of the occurrence of kinetic arrest was realized at low temperatures through in situ electron beam triggered nucleation and perpetual devitrification of the R3c phase into a Pbnm phase. It was clearly evidenced that the R3c structure of La(x)MnO(3±δ), below its ferromagnetic transition temperature, is metastable and prone to be transformed to a Pbnm orthorhombic structure following initiation by an electron beam trigger. The electron beam transformed Pbnm phase was found to transform back to the R3c phase through a first-order phase transition occurring close to the ferromagnetic to paramagnetic transition (T(c)) during heating. The glass-like kinetics of the arrested R3c phase has been investigated through resistance relaxation measurements, showing a decreasing logarithmic rate of decay of the arrested R3c phase towards the stable Pbnm phase with decreasing temperature, down to 5 K. On the basis of the correlations observed in the resistance-versus-temperature, magnetization-versus-temperature, magnetization-versus-field, resistance relaxation and LT-XRD measurements, the occurrence of kinetic arrest has been attributed to the suppression of Jahn-Teller distortion by double exchange across the insulator-metal transition.  相似文献   

16.
A particle in a random potential with logarithmic correlations in dimensions d = 1,2 is shown to undergo a dynamical transition at T(dyn)>0. In d = 1 exact results show T(dyn) = T(c), the static glass transition temperature, and that the dynamical exponent changes from z(T) = 2+2(T(c)/T)(2) at high T to z(T) = 4T(c)/T in the glass phase. The same formulas are argued to hold in d = 2. Dynamical freezing is also predicted in the 2D random gauge XY model and related systems. In d = 1 a mapping between dynamics and statics is unveiled and freezing involves barriers as well as valleys. Anomalous scaling occurs in the creep dynamics, relevant to dislocation motion experiments.  相似文献   

17.
We report the results of measurements of the low-temperature specific heat Cp(T) and the ac susceptibility χac(T) in low applied magnetic fields for a series of samples of Eu1-xCaxB6. The anomalies in Cp(T), together with the results for χac(T) and M(H), confirm the onset of phase transitions to long range magnetic order for x < 0.7 and provide evidence that for x ≥ 0.7, the Eu moments, which are captured in large magnetic clusters with magnetic moments of the order of 260 μB, adopt a spin-glass type ground state. The data set allows to establish the low-temperature [ T,x] phase diagram of this alloy series.  相似文献   

18.
The lower critical field H(c1) for highly underdoped YBa2Cu3O(6+x) with T(c) between 8.9 and 22 K has been determined by measurements of magnetization M(H) curves with applied field parallel to the c axis. H(c1) is linear in temperatures below about 0.6T(c), and H(c1)(0) is proportional to T(1.64+/-0.04)(c), clearly violating the proportionality between rho(s)(0) and T(c). Moreover, the slope -dH(c1)/dT decreases steeply toward zero as T(c) approaches zero, indicating that the effective charge of the quasiparticles vanishes as the doping is decreased toward the insulating phase.  相似文献   

19.
We have synthesized polycrystalline samples of Eu(1-x)K(x)Fe2As2 (x = 0-1) and carried out systematic characterization using x-ray diffraction, ac and dc magnetic susceptibility, and electrical resistivity measurements. A clear signature of the coexistence of a superconducting transition (T(c) = 5.5 K) with spin density wave (SDW) ordering is observed in our underdoped sample with x = 0.15. The SDW transition disappears completely for the x = 0.3 sample and superconductivity arises below 20 K. The superconducting transition temperature Tc increases with increase in the K content and a maximum Tc = 33 K is reached for x = 0.5, beyond which it decreases again. The doping dependent Tx phase diagram is extracted from the magnetic and electrical transport data. It is found that magnetic ordering of Eu moments coexists with the superconductivity up to x = 0.6. The isothermal magnetization data taken at 2 K for the doped samples suggest the 2+ valence state of the Eu ions. We also present the temperature dependence of the lower critical field H(c1) of the superconducting polycrystalline samples. The values of H(c1)(0) obtained for x = 0.3, 0.5, and 0.7 after taking the demagnetization factor into account are 202, 330, and 212 Oe, respectively. The London penetration depth λ(T) calculated from the lower critical field does not show exponential dependence at low temperature, as would be expected for a fully gapped clean s-wave superconductor. In contrast, it shows a T2 power law feature up to T = 0.3Tc, as observed in Ba(1-x)K(x)Fe2As2 and BaFe(2-x)Co(x)As2.  相似文献   

20.
Phase-sensitive order parameter symmetry test experiments are presented on the electron-doped high-T(c) cuprate Nd(2-x)Ce(x)CuO(4-y). These experiments have been conducted using zigzag-shaped thin film Josephson structures, in which the Nd(2-x)Ce(x)CuO(4-y) is connected to the low-T(c) superconductor Nb via an Au barrier layer. For the optimally doped as well as for the overdoped Nd(2-x)Ce(x)CuO(4-y), a clear predominant d(x2-y2)-wave behavior is observed at T=4.2 K. Both compounds were also investigated at T=1.6 K, presenting no indications for a change to a predominant s-wave symmetry with decreasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号