首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
磁性隧道结自旋极化电子的隧穿特性   总被引:1,自引:0,他引:1  
铁磁金属间通过中间层的自旋极化电子隧穿产生的磁性耦合,在自旋电子器件中有许多潜在的应用.考虑由一平面磁性势垒层隔开的两铁磁性金属电极构成的磁性隧道结,针对中间层形成的矩形势垒,在近自由电子模型的基础上,计算零偏压下的隧穿电导、自旋极化率和隧穿磁阻比率,分析势垒层特性、分子场强弱、分子场相对取向等对隧道结自旋极化电子隧穿特性的影响.计算结果对自旋电子器件的设计具有一定的指导意义.  相似文献   

2.
An electron transport is studied in the system that consists of a scanning tunneling microscopy, single-molecule magnet metal. Because of quantum tunneling of magnetization in a single-molecule magnet, linear response conductance exhibits stepwise behavior with increasing longitudinal field, and each step is maximized at a certain value of field sweeping speed. The conductance at each step oscillates as a function of the additional transverse magnetic field along the hard axis. A rigorous theory is presented that combines the exchange model with the Landau-Zener model.  相似文献   

3.
We calculate the tunnel current between two parallel two-dimensional electron systems in a strong perpendicular magnetic field. We model the strongly correlated electron systems by Wigner crystals, and describe their low-energy dynamics in terms of magnetophonons. The effects of the magnetophonons on the tunneling processes can be described by an exactly solvable independent-boson model. A tunneling electron shakes up magnetophonons, which results in a conductance peak that is displaced away from zero voltage and broadened compared with the case of no magnetic field. At low temperatures and low enough voltages the tunneling conductance is strongly suppressed, and the I–V characteristics exhibit a power-law behavior. The zero-voltage conductance is thermally activated with an activation temperature 10 K. The results are in very good agreement with experiment.  相似文献   

4.
An analytical model of gate-all-around(GAA) silicon nanowire tunneling field effect transistors(NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling(BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane’s expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results.  相似文献   

5.
Resonant quantum tunneling of the Néel vector between nonequivalent magnetic wells is investigated theoretically for a nanometer-scale single-domain antiferromagnet with biaxial crystal symmetry in the presence of an external magnetic field applied along the easy anisotropy axis, based on the two-sublattice model. Both the Wentzel-Kramers-Brillouin exponent and the preexponential factors are evaluated in the instanton contribution to the tunneling rate for finite and zero magnetic fields by applying the instanton technique in the spin-coherent-state path-integral representation, respectively. The quantum interference or spin-parity effects induced by the topological phase term in the Euclidean action are discussed in the rate of quantum tunneling of the Néel vector. In the absence of an external applied magnetic field, the effect of destructive phase interference or topological quenching on resonant quantum tunneling of the Néel vector is evident for the half-integer excess spin antiferromagnetic nanoparticle. In the weak field limit, the tunneling rates are found to oscillate with the external applied magnetic field for both integer and half-integer excess spins. We discuss the experimental condition on the applied magnetic field which may allow one to observe the topological quenching effect for nanometer-scale single-domain antiferromagnets with half-integer excess spins. Tunneling behavior in resonant quantum tunneling of the magnetization vector between nonequivalent magnetic wells is also studied for a nanometer-scale single-domain ferromagnet by applying the similar technique, but in the large noncompensation limit. Received 4 June 1999  相似文献   

6.
The field and temperature dependence of the probability of two-dimensional dissipative tunneling is studied in the framework of one-instanton approximation for a model double-well oscillator potential in an external electric field at finite temperature with account for the influence of two local phonon modes for quantum dots in a system of a combined atomic force and a scanning tunneling microscope. It is demonstrated that in the mode of synchronous parallel transfer of tunneling particles from the cantilever tip to the quantum dot the two local phonon modes result in the occurrence of two stable peaks in the curve of the 2D dissipative tunneling probability as a function of the field. Qualitative comparison of the theoretical curve in the limit of weak dissociation and the experimental current–voltage characteristic for quantum dots that grow from colloidal gold under a cantilever tip at the initial stage of quantum-dot formation when the quantum dot size does not exceed 10 nm is performed. It is established that one of the two stable peaks that correspond to interaction of tunneling particles with two local phonon modes in the temperature dependence of the 2D dissipative tunneling probability can be split in two, which corresponds to the tunneling channel interference mechanism. It is found that the theoretically predicted and experimentally observed mode of quantum beats occurs near the bifurcation point.  相似文献   

7.
A microscopic model is developed for resonant tunneling transport in weakly coupled semiconductor superlattices in a constant external electric field. The model takes into account multiple subbands and electric-field dependence of scattering by acoustic and optical phonons, charged impurities, and interface roughness. The model is used as a basis for computing the resonant-tunneling profiles for structures with small size-quantization energies. The computed results are in good agreement with experiment. In structures of this type, an important role is played by electric-field dependence of scattering processes and the threshold behavior of elastic processes is strongly manifested. A substantial asymmetry is predicted not only for the first tunneling resonance, but also for higher order resonant tunneling processes.  相似文献   

8.
借助自旋极化隧道模型,对具有不同居里温度的Mn基钙铁矿氧化物的电阻率随温度和磁场的变化行为进行了计算。结果表明,模型给出的结果和献上普遍报道的实验结果在行为上有非常好的一致性,表明这类材料中所观察到的电子输运和磁性质可以基于这一模型而得以理解。  相似文献   

9.
Resistive heating, emission heating or cooling (e.g., the Nottingham effect), and thermal fluctuation radiation are examples of energy exchange processes which are fundamental in electron field emission and in tunneling junctions of scanning tunneling microscopy. These exchange processes are analyzed for both electronic tunneling processes. We first discuss the energy delivered by a monoatomic tip in the field emission process. Strong phonon excitation is expected for field emission currents exceeding 1 nA. Secondly we present a theoretical calculation of the thermal deposition associated with the Nottingham effect in a tunneling junction. The calculation is based on the free electron model for the electrode materials and the tunneling process across a planar vacuum gap. Our results show that the thermal power is deposited not only at the electron receiving electrode but also at the emitting electrode. This originates from a finite probability for electrons below the Fermi level to tunnel through the tunneling barrier replaced by electrons starting from the Fermi level. The comparison between the calculations and the recent STM measurements is given. Finally we discuss the other energy exchange processes in the tunneling junction, and conclude that the thermal coupling between the tip and the sample of STM is extremely small under UHV conditions. This is important for high temperature STM.  相似文献   

10.
Field emission from nanostructured carbon materials is analyzed by applying the model of emission center in which the emitting surface contains two phases of carbon having substantially different electronic properties. In accordance with this model, the proposed mechanism involves electron tunneling through two potential barriers. The calculated probability of tunneling through two potential barriers implies that the low-voltage field emission observed experimentally can be attributed to the existence of resonant surface states. Numerical estimates suggest that the emission current can increase by at least four orders of magnitude owing to resonant tunneling through two potential barriers.  相似文献   

11.
A. Modinos 《Surface science》1974,42(1):205-227
The consequences of tunneling from surface states on the total energy distribution of field emitted electrons from a clean germanium surface are investigated in some detail. A model for the surface states due to Handler is employed and tunneling from the surface states is treated semiclassically. The results of the calculation are compared with available experimental data.  相似文献   

12.
An “atomic” model of an insulating barrier between two free-electron model metals is used to investigate resonant tunneling across the insulator in the presence of a medium to large, externally applied electric field (bias). The exact numerically calculated tunneling current exhibits a pronounced oscillatory bias dependence superposed on the dominant roughly exponential tunneling characteristic. The interpretation of these results in terms of an internal field emission or Fowler-Nordheim type tunneling subject to “periodic deviations” (or interferences) seems plausible and was suggested by Maserjian. To test this conjecture, a trapezoidal barrier model of our “atomic” model analyzed numerically. As expected, the trapezoidal barrier model could only qualitatively reproduce the oscillatory bias dependence of the barrier transmissivity and of the current. Furthermore this limited agreement depends on allowing the effective mass in the barrier to become a strictly adjustable parameter. This failure of the conventional model of the junction can be interpreted as follows: (i) For moderate external (bias) fields the trapezoidal barrier fails to account for the correct position dependence of the Blochwave vector in the insulator's conduction band, hence the correct interference conditions cannot be reproduced. (ii) For large external fields the band model itself begins to fail. An explanation of oscillatory bias dependence at the tunneling current in terms of splitting of the insulator's conduction band into a set of discrete Stark levels is suggested. It is demonstrated that a fit of the oscillatory tunneling characteristics in the “Fowler-Nordheim regime” is not a reliable technique to determine the effective mass in the thin insulating film of tunneling junctions over the energy interval containing the forbidden gap and the adjoining conduction-band.  相似文献   

13.
Quantum spin tunneling and Kondo effect are two very different quantum phenomena that produce the same effect on quantized spins, namely, the quenching of their magnetization. However, the nature of this quenching is very different so that quantum spin tunneling and Kondo effect compete with each other. Importantly, both quantum spin tunneling and Kondo effect produce very characteristic features in the spectral function that can be measured by means of single spin scanning tunneling spectroscopy and allows to probe the crossover from one regime to the other. We model this crossover, and the resulting changes in transport, using a non-perturbative treatment of a generalized Anderson model including magnetic anisotropy that leads to quantum spin tunneling. We predict that, at zero magnetic field, integer spins can feature a split-Kondo peak driven by quantum spin tunneling.  相似文献   

14.
We investigate tunneling decay in a magnetic field. Because of broken time-reversal symmetry, the standard WKB technique does not apply. The decay rate and the outcoming wave packet are found from the analysis of the set of the particle Hamiltonian trajectories and its singularities in complex space. The results are applied to tunneling from a strongly correlated 2D electron system in a magnetic field parallel to the layer. We show in a simple model that electron correlations strongly affect the tunneling rate.  相似文献   

15.
Using the classical-trajectory Monte Carlo model, we have theoretically studied the angular momentum distribution of frustrated tunneling ionization(FTI) of atoms in strong laser fields. Our results show that the angular momentum distribution of the FTI events exhibits a double-hump structure. With this classical model, we back traced the tunneling coordinates, i.e., the tunneling time and initial transverse momentum at tunneling ionization. It is shown that for the events tunneling ionized at the rising edge of the electric field,the final angular momentum exhibits a strong dependence on the initial transverse momentum at tunneling.While for the events ionized at the falling edge, there is a relatively harder recollision between the returning electron and the parent ion, leading to the angular momentum losing the correlation with the initial transverse momentum. Our study suggests that the angular momentum of the FTI events could be manipulated by controlling the initial coordinates of the tunneling ionization.  相似文献   

16.
In nonequilibrium experiments on the glasses Mylar and BK7, we measured the excess dielectric response after the temporary application of a strong electric bias field at millikelvin temperatures. A model recently developed describes the observed long time decays qualitatively for Mylar [Phys. Rev. Lett. 90, 105501(2003)]], but fails for BK7. In contrast, our results on both samples can be described by including an additional mechanism to the mentioned model with temperature independent decay times of the excess dielectric response. As the origin of this novel process beyond the "tunneling model" we suggest bias field induced structural rearrangements of "tunneling states" that decay by quantum mechanical tunneling.  相似文献   

17.
研究了电子的自旋相关的隧穿和极化。在外加磁场的作用下,自旋向上的电子与自旋向下的电子具有不同的隧穿系数。当电子的自旋方向与磁场方向相反时,其隧穿概率受到磁场的抑制而变小;反之,当两平行时,电子的了隧穿系数增大。这种差异可以用本中定义的自旋极化率来表示。本对不同磁场下的自旋极化率进行了计算,结果也表明当电子的动能较小,这种自旋极化的效应越显。  相似文献   

18.
《Infrared physics》1990,30(4):307-322
The widespread use of the transfer Hamiltonian model in interpreting electron tunneling should be rejected, and replaced by the current density operator formalism. Starting from first principles of quantum field theory, we present a more comprehensive theory of photon assisted tunneling. The possible application to mixer theory up to the Exahertz frequency region is outlined.  相似文献   

19.
20.
Time-dependent specific heat experiments on the molecular nanomagnet Fe8 and the isotopic enriched analogue 57Fe8 are presented. The inclusion of the 57Fe nuclear spins leads to a huge enhancement of the specific heat below 1 K, ascribed to a strong increase in the spin-lattice relaxation rate gamma arising from incoherent, nuclear-spin-mediated magnetic quantum tunneling (MQT) in the ground doublet. Since gamma is found comparable to the expected tunneling rate, the MQT process has to be inelastic. A model for the coupling of the tunneling spins to the lattice is presented. Under transverse field, a crossover from nuclear-spin-mediated to phonon-induced tunneling is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号