首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 248 毫秒
1.
We investigate the competing effects of interlayer exchange coupling and magnetostatic coupling in the magnetic heterostructure ([Co/Pt]/NiO/[Co/Pt]) with perpendicular magnetic anisotropy (PMA). This particular heterostructure is unique among coupled materials with PMA in directly exhibiting both ferromagnetic and antiferromagnetic coupling, oscillating between the two as a function of spacer layer thickness. By systematically tuning the coupling interactions via a wedge-shaped NiO spacer layer, we explore the energetics that dictate magnetic domain formation using high resolution magnetic force microscopy coupled with the magneto-optical Kerr effect. This technique probes the microscopic and macroscopic magnetic behavior as a continuous function of thickness and the interlayer exchange coupling, including the regions where interlayer coupling goes through zero. We see significant changes in domain structure based on the sign of coupling, and also show that magnetic domain size is directly related to the magnitude of the interlayer exchange coupling energy, which generally dominates over the magnetostatic interactions. When magnetostatic interactions become comparable to the interlayer exchange coupling, a delicate interplay between the differing energy contributions is apparent and energy scales are extracted. The results are of intense interest to the magnetic recording industry and also illustrate a relatively new avenue of undiscovered physics, primarily dealing with the delicate balance of energies in the formation of magnetic domains for coupled systems with PMA, defining limits on domain size as well as the interplay between roughness, domains and magnetic coupling.  相似文献   

2.
Investigation has been performed on the interlayer coupling between two Co/Pt multilayers with perpendicular anisotropy separated by Cr spacers. As a function of the Cr spacer thickness, only ferromagnetic interlayer coupling has been observed between the two Co/Pt multilayers in contrast to the oscillatory interlayer coupling between ferromagnetic and antiferromagnetic observed in ferromagnetic layers with in-plane anisotropy separated by Cr spacers. It is the strength of the ferromagnetic interlayer coupling that has been observed to be oscillatory as a function of the Cr spacer thickness with a period of about 7 Å.  相似文献   

3.
We have studied the interlayer exchange coupling between Gd and Co through Pt and Cr spacers in a series of multilayers. Magnetization curves have been analyzed with a model, taking into account bilinear and biquadratic interlayer exchange couplings between Gd and Co. The interlayer exchange coupling constants have been determined as a function of the Pt or Cr spacer layer thickness.  相似文献   

4.
The coercivity of a Co/Pt multilayer with out-of-plane anisotropy can be lowered greatly if it is grown onto an ultrathin NiO underlayer . By making use of this characteristic, a series of samples glass/NiO(10 Å)/[Co(4 Å)/Pt(5 Å)]3/Pt(x Å)/[Co(4 Å)/Pt(5 Å)]3 with different Pt spacer thickness have been prepared to determine the ferromagnetic (FM) coupling between Co layers across the Pt layer. The measurements of major and minor hysteresis loops have shown that the FM coupling between the top and bottom Co/Pt multilayers decreases monotonically with the Pt layer thickness and disappears above the Pt layer thickness of 40 Å. This thickness of 40 Å is much larger than that in the literature. In addition to the FM coupling between the top and bottom Co/Pt multilayers across the Pt spacer, there exists a weak biquadratic coupling, which induces the broad transition of the bottom Co/Pt multilayer.  相似文献   

5.
刘伟  刘雄华  崔伟斌  龚文杰  张志东 《中国物理 B》2013,22(2):27104-027104
Recent advances in the study of exchange couplings in magnetic films are introduced.To provide a comprehensive understanding of exchange coupling,we have designed different bilayers,trilayers and multilayers,such as anisotropic hard/soft-magnetic multilayer films,ferromagnetic/antiferromagnetic/ferromagnetic trilayers,[Pt/Co]/NiFe/NiO heterostructures,Co/NiO and Co/NiO/Fe trilayers on an anodic aluminum oxide(AAO) template.The exchange-coupling interaction between soft-and hard-magnetic phases,interlayer and interfacial exchange couplings and magnetic and magnetotransport properties in these magnetic films have been investigated in detail by adjusting the magnetic anisotropy of ferromagnetic layers and by changing the thickness of the spacer layer,ferromagnetic layer,and antiferromagnetic layer.Some particular physical phenomena have been observed and explained.  相似文献   

6.
Training effects in a new class of exchange biased ferromagnet/antiferromagnet/ferromagnet trilayers (Co/NiO/[Co/Pt]3) with mutually orthogonal easy axes have been measured and successfully modeled. Previous experiments have demonstrated an enhanced blocking temperature as well as the ability to isothermally field tune the magnitude of the room temperature in-plane exchange bias. These effects have been attributed to the presence of the [Co/Pt] multilayer with perpendicular magnetic anisotropy, which variably pins the backside NiO domains. Here we show that the tuning of the exchange bias and the blocking temperature enhancement are highly dependent on both the temperature and the in-plane remanence of the normally out-of-plane [Co/Pt] multilayer, achieved using modest in-plane set fields. Training effects and their dependence on temperature and in-plane remanence are modeled using a thermodynamic approach. The in-plane remanence of the [Co/Pt] acts only to set the equilibrium exchange bias value and sets the scale for the blocking temperature; it has no effect on the training. We conclude that training effects occur only at the Co/NiO interface and that the relaxation towards equilibrium is confined to this interface. The field enhanced blocking temperature and isothermal tuning of exchange bias in these magnetic heterostructures with mutually orthogonal easy axes could play a role in the enhancement of exchange bias effects in future spin-valve devices. A thorough knowledge of the training effects is essential to account for the fundamental relaxation mechanisms that occur with repeated field cycling.  相似文献   

7.
We study magnetization reversal in the interlayer coupled [Pt/Co]5/Ru/[Co/Pt]5 multilayers (MLs) by means of the measurement of extraordinary Hall effect (EHE). Fitting experimental data to a simple model, we determine the interlayer coupling strength for various thicknesses of the ferromagnetic layers at a fixed Ru spacer thickness. It is found that the dependence of interlayer coupling strength on the Pt layer thickness is much stronger than the previous report in the ferromagnetic/nonmagnetic/ferromagnetic multilayers.  相似文献   

8.
The effect of the structural quality of the buffer stack on the structural properties, giant magnetoresistance (GMR) and the quality of the antiferromagnetic coupling has been investigated for Co/Cu/Co sandwiches prepared by DC-magnetron sputtering. Three kinds of buffers were employed: type A: Cr(6 nm)/Co(0.8 nm)/Cu(10 nm), type B: Fe(6 nm)/Co(0.8 nm)/Cu(10 nm) and type C: Cr(4 nm)/Fe(3 nm)/Co(0.8 nm)/Cu(10 nm). For B and C type buffers, the antiferromagnetic alignment is very interesting at zero field with a coupling strength larger than 0.4 erg/cm2 and a GMR signal reaching 5% at room temperature. However, for the A type buffer the antiferromagnetic coupling completely disappears, while the GMR drops to about 0.8%. X-ray diffraction, atomic force microscopy and transmission electron microscopy have been performed in order to understand the origin of the observed difference in the magnetic properties. The results show a strong difference in the average surface roughness, 1.15 nm and 0.35 nm, respectively for the A and C types buffers, and demonstrate that the quality of the surface of the buffer is the key to optimize both the GMR and the indirect exchange coupling. Received 11 July 2000  相似文献   

9.
The interlayer exchange coupling between Co/Pt perpendicular-to-plane magnetized layers across a thin IrMn spacer layer was experimentally studied. In contrast to earlier studies on interlayer coupling through antiferromagnetic NiO, which revealed an oscillatory coupling behavior as a function of NiO thickness, a ferromagnetic coupling was observed here in the range of IrMn thickness between 0.6 and 1.5 nm and antiferromagnetic between 1.5 and 2.5 nm. The antiferromagnetic coupling is attributed to an orange peel magnetostatic mechanism whereas the ferromagnetic coupling is attributed to an out-of-plane polarization of the antiferromagnetic IrMn layer induced by the interfacial exchange interaction with the adjacent out-of-plane ferromagnetic layers. Measurements of hysteresis loops versus temperature show that the coupling vanishes at 510 K for tIrMn=1 nm. This critical temperature is far below the Néel temperature of bulk IrMn, but above the blocking temperature of IrMn/Co bilayers at such thickness. Using a one-dimensional model describing a partial domain wall in the antiferromagnet, we explain the coupling in terms of an out-of-plane tilt of the Mn moments at the IrMn/(Co/Pt) interfaces yielding a weak net polarization of the IrMn. Finally, the non-oscillatory decay of the coupling was attributed to the compensated spin structure of the IrMn in the parallel to the interfaces.  相似文献   

10.
In antiferromagnetically coupled multilayers with perpendicular anisotropy unusual multidomain textures can be stabilized due to a close competition between long-range demagnetization fields and short-range interlayer exchange coupling. In particular, the formation and evolution of specific topologically stable planar defects within the antiferromagnetic ground state, i.e. wall-like structures with a ferromagnetic configuration extended over a finite width, explain configurational hysteresis phenomena recently observed in [Co/Pt(Pd)]/Ru and [Co/Pt]/NiO multilayers. Within a phenomenological theory, we have analytically derived the equilibrium sizes of these “ferroband” defects as functions of the antiferromagnetic exchange, a bias magnetic field, and geometrical parameters of the multilayers. In the magnetic phase diagram, the existence region of the ferrobands mediates between the regions of patterns with sharp antiferromagnetic domain walls and regular arrays of ferromagnetic stripes. The theoretical results are supported by magnetic force microscopy images of the remanent states observed in [Co/Pt]/Ru.  相似文献   

11.
The effect of the antiferromagnetic IrMn thickness upon the magnetic properties of CoFe/Pt/CoFe/[IrMn(tIrMn)] multilayers is studied. An oscillatory interlayer coupling (IEC) has been shown in pinned CoFe/Pt(tPt)/CoFe/IrMn multilayers with perpendicular anisotropy. The period of oscillation corresponds to about 2 monolayers of Pt. The oscillatory behavior of IEC depends on the nonmagnetic metallic Pt thickness and is thought to be related to the antiferromagnetic ordering induced by the IrMn layer. From the extraordinary Hall voltage amplitude (EHA) curves as function of IrMn thickness, we report that the oscillation dependence of IEC for the [CoFe/Pt/CoFe] multilayer system induced by IrMn with spacer-layer thickness is a important features of perpendicular exchange biased system.  相似文献   

12.
The realization of perpendicular magnetization and perpendicular exchange bias(PEB)in magnetic multilayers is important for the spintronic applications.NiO(t)/[Ni(4 nm)/Pt(1 nm)]2multilayers with varying the NiO layer thickness t have been epitaxially deposited on SrTiO;(001)substrates.Perpendicular magnetization can be achieved when t<25 nm.Perpendicular magnetization originates from strong perpendicular magnetic anisotropy(PMA),mainly resulting from interfacial strain induced by the lattice mismatch between the Ni and Pt layers.The PMA energy constant decreases monotonically with increasing t,due to the weakening of Ni(001)orientation and a little degradation of the Ni–Pt interface.Furthermore,significant PEB can be observed though NiO layer has spin compensated(001)crystalline plane.The PEB field increases monotonically with increasing t,which is considered to result from the thickness dependent anisotropy of the NiO layer.  相似文献   

13.
The magnetization behaviour of a Co/Cu/Co(001) sandwich has been studied by magneto-optical Kerr effect measurements. The sample was grown by molecular beam epitaxy onto a sapphire (1 .2) substrate with a Cu/Cr/Nb(001) buffer system. The copper layer had the form of a wedge with the thickness range chosen to be around the second region of antiferromagnetic exchange coupling. The hysteresis loops in the regime of weak antiferromagnetic coupling show characteristic steps, which can be explained by an anisotropy-induced non-collinear spin state. Indication for a similar behaviour is also found in the regime of strong antiferromagnetic coupling. This behaviour is explained by taking into account the competition between anisotropy, interlayer exchange coupling and external field energy. The nature of this metastable non-collinear magnetization state is in marked contrast to the biquadratic (90°) exchange coupling which was discovered in Fe/Cr(001).  相似文献   

14.
俱海浪  向萍萍  王伟  李宝河 《物理学报》2015,64(19):197501-197501
采用直流磁控溅射法在玻璃基片上制备了Pt底层和MgO/Pt双底层的Co/Ni多层膜样品, 通过反常霍尔效应研究了不同MgO厚度和退火温度对样品垂直磁各向异性(perpendicular magnetic anisotropy, PMA)的影响. 随着底层中MgO厚度的逐渐增加, 样品的矫顽力也随之增强, 霍尔电阻变化不大; 对样品进行退火处理后发现, 单纯Pt底层的Co/Ni多层膜随着退火温度的升高, 霍尔电阻逐渐降低, 矫顽力则迅速降低, 热稳定性较差; 而当MgO/Pt双底层的样品在200 ℃退火后矫顽力大幅增加, 霍尔电阻略微有所减小, 更高的退火温度使得Co和Ni合金化, 导致多层膜的PMA特征减弱.  相似文献   

15.
Magnetization and susceptibility measurements have been performed on Co granular (Al2O3/Co/Pt)25 multilayers. A cusp-like anomaly is present in the susceptibility, which together with magnetization measurements suggests that the samples behave as an amorphous Correlated-Super-Spin system. The presence of CoPt partial alloying is proven by the XANES spectra. The XMCD spectra show that the interfacial Pt atoms become magnetically polarized by hybridization of the Pt 5d and Co 3d electrons, and are ferromagnetically coupled to the Co particle moments. The Pt layer is effective in transmitting interparticle exchange coupling.  相似文献   

16.
The magnetic properties of multilayer Gd/Si/Co magnetic films are experimentally studied by electron magnetic resonance and analyzed theoretically. The introduction of a semiconductor silicon interlayer is found to substantially affect the magnetic interlayer coupling and the magnetic dynamics of the system. The interlayer coupling is shown to be ferromagnetic for the (Gd/Si)n films and to be antiferromagnetic for the (Gd/Si/Co/Si)n films. The temperature dependences of the exchange parameters and the gyromagnetic ratios are determined. Possible mechanisms responsible for the formation of the interlayer coupling are discussed.  相似文献   

17.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/NiO多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场.外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

18.
采用能量极小原理研究了Permalloy(Py)/Cu/Co/Ni O多层膜结构中层间耦合强度和应力各向异性场对薄膜共振频率的影响,得到共振频率随外磁场强度变化关系式.结果发现外应力场强度和方向对系统共振频率的影响在本文中要强于层间耦合强度和交换各向异性场,外应力场方向对光学模共振频率的影响强于声学模,而外应力场强度对声学模共振频率的影响强于光学模.  相似文献   

19.
付艳强  刘洋  金川  于广华 《物理学报》2009,58(11):7977-7982
采用磁控溅射的方法制备了Co/FeMn/Co多层膜,研究了Co(底部)/FeMn和FeMn/Co(顶部)界面插入Pt层后磁矩的变化情况.通过测量磁滞回线可知,Co(底部)/FeMn界面的Pt插层改变了体系的饱和磁化强度s,随着Co层厚度(tCo)的增加s不断趋近于Co块体结构理论值1440 kA/m.这是因为Co(底部)/FeMn界面产生了净磁矩,而界面处的Pt插层可以减少这种净磁矩的产生.但是 关键词: 磁性多层膜 垂直磁各向异性 交换耦合  相似文献   

20.
An in-plane perpendicular magnetic coupling between Ni80Fe20 and Co has been found in NiFe/NiO/Co trilayers for a NiO thickness ranging from 4 to 25 nm by magneto-optical Kerr effect and x-ray magnetic circular dichroism measurements. In the easy magnetization direction of the Co layer, the Co coercive field H(C) increases when the thickness of the NiO layer t(NiO) increases. Because of the coupling, H(C) is always larger than for NiO/Co bilayers with the same thicknesses. The saturation field of the NiFe layer H(S) decreases when t(NiO) increases, indicating a weakening of the coupling. Numerical simulations show that the presence of interface roughness combined with a small value of the NiO anisotropy can explain the observed 90 degrees coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号