首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an analytical strong-disorder renormalization group theory of the quantum phase transition in the dissipative random transverse-field Ising chain. For Ohmic dissipation, we solve the renormalization flow equations analytically, yielding asymptotically exact results for the low-temperature properties of the system. We find that the interplay between quantum fluctuations and Ohmic dissipation destroys the quantum critical point by smearing. We also determine the phase diagram and the behavior of observables in the vicinity of the smeared quantum phase transition.  相似文献   

2.
We investigate the effect of quenched bond disorder on the anisotropic antiferromagnetic spin-1/2 (XXZ) chain as a model for disorder-induced quantum phase transitions. We find nonuniversal behavior of the average correlation functions for weak disorder, followed by a quantum phase transition into a strongly disordered phase with only short-range xy correlations. We find no evidence for the universal strong-disorder fixed point predicted by the real-space renormalization group, suggesting a qualitatively different view of the relationship between quantum fluctuations and disorder.  相似文献   

3.
We reexamine dipolar motion of condensate atoms in one-dimensional optical lattices and harmonic magnetic traps including quantum fluctuations within the truncated Wigner approximation. In the strong tunneling limit we reproduce the mean field results with a sharp dynamical transition at the critical displacement. When the tunneling is reduced, on the contrary, strong quantum fluctuations lead to finite damping of condensate oscillations even at infinitesimal displacement. We argue that there is a smooth crossover between the chaotic classical transition at finite displacement and the superfluid-to-insulator phase transition at zero displacement. We further analyze the time dependence of the density fluctuations and of the coherence of the condensate and find several nontrivial dynamical effects, which can be observed in the present experimental conditions.  相似文献   

4.
The problem of nonlinear transport near a quantum phase transition is solved within the Landau theory for the dissipative insulator-superconductor phase transition in two dimensions. Using the nonequilibrium Schwinger round-trip Green function formalism, we obtain the scaling function for the nonlinear conductivity in the quantum-disordered regime. We find that the conductivity scales as E2 at low fields but crosses over at large fields to a universal constant on the order of e(2)/h. The crossover between these two regimes obtains when the length scale for the quantum fluctuations becomes comparable to that of the electric field within logarithmic accuracy.  相似文献   

5.
We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases.  相似文献   

6.
Using the measure of interference defined in this paper, we investigate the quantum phase transition of one-dimensional Ising chains. We find that thermal fluctuations affect the interference more strongly at the critical point. We also show that the derivative of the interference with respect to the coupling parameter, A, can be depressed by the thermal fluctuation. Finally, we find that this suppression is due to multi-particle excitations.  相似文献   

7.
ABSTRACT

The thermal metal-insulator phase transition in the π-stacked (EDO-TTF)2PF6 charge transfer salt is of the Peierls type. It is related to geometrical reorganisations and charge ordering phenomena. We report that dimerising displacements are involved in the mechanism of this transition. By using periodic quantum chemical calculations, we find a double well potential in which dimerisation and charge localisation become manifest. By analysing the nuclear wavefunctions we discuss the mechanism of the phase transition in terms of thermal fluctuations.  相似文献   

8.
We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin–orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.  相似文献   

9.
10.
The subtle interplay of randomness and quantum fluctuations at low temperatures gives rise to a plethora of unconventional phenomena in systems ranging from quantum magnets and correlated electron materials to ultracold atomic gases. Particularly strong disorder effects have been predicted to occur at zero-temperature quantum phase transitions. Here, we demonstrate that the composition-driven ferromagnetic-to-paramagnetic quantum phase transition in Sr(1-x)Ca(x)RuO3 is completely destroyed by the disorder introduced via the different ionic radii of the randomly distributed Sr and Ca ions. Using a magneto-optical technique, we map the magnetic phase diagram in the composition-temperature space. We find that the ferromagnetic phase is significantly extended by the disorder and develops a pronounced tail over a broad range of the composition x. These findings are explained by a microscopic model of smeared quantum phase transitions in itinerant magnets. Moreover, our theoretical study implies that correlated disorder is even more powerful in promoting ferromagnetism than random disorder.  相似文献   

11.
We analyze the jamming transition that occurs as a function of increasing packing density in a disordered two-dimensional assembly of disks at zero temperature for "Point J" of the recently proposed jamming phase diagram. We measure the total number of moving disks and the transverse length of the moving region, and find a power law divergence as the packing density increases toward a critical jamming density. This provides evidence that the T=0 jamming transition as a function of packing density is a second order phase transition. Additionally, we find evidence for multiscaling, indicating the importance of long tails in the velocity fluctuations.  相似文献   

12.
In disordered itinerant magnets with arbitrary symmetry of the order parameter, the conventional quantum critical point between the ordered phase and the paramagnetic Fermi liquid (PMFL) is destroyed due to the formation of an intervening cluster glass (CG) phase. In this Letter, we discuss the quantum critical behavior at the CG-PMFL transition for systems with continuous symmetry. We show that fluctuations due to quantum Griffiths anomalies induce a first-order transition from the PMFL at T = 0, while at higher temperatures a conventional continuous transition is restored. This behavior is a generic consequence of enhanced non-Ohmic dissipation caused by a broad distribution of energy scales within any quantum Griffiths phase in itinerant systems.  相似文献   

13.
We study a generalized cold atom Bose-Hubbard model, where the periodic optical potential is formed by a cavity field with quantum properties. On the one hand, the common coupling of all atoms to the same mode introduces cavity-mediated long-range atom-atom interactions, and, on the other hand, atomic backaction on the field introduces atom-field entanglement. This modifies the properties of the associated quantum phase transitions and allows for new correlated atom-field states, including superposition of different atomic quantum phases. After deriving an approximative Hamiltonian including the new long-range interaction terms, we exhibit central physical phenomena at generic configurations of few atoms in few wells. We find strong modifications of population fluctuations and next-nearest-neighbor correlations near the phase transition point.  相似文献   

14.
We consider a triple quantum dot system in a triangular geometry with one of the dots connected to metallic leads. Using Wilson’s numerical renormalization group method, we investigate quantum entanglement and its relation to the thermodynamic and transport properties in the regime where each of the dots is singly occupied on average, but with non-negligible charge fluctuations. It is shown that even in the regime of significant charge fluctuations the formation of the Kondo singlets induces switching between separable and perfectly entangled states. The quantum phase transition between unentangled and entangled states is analyzed quantitatively and the corresponding phase diagram is explained by exactly solvable spin model. In the framework of an effective model we also explain smearing of the entanglement transition for cases when the symmetry of the triple quantum dot system is relaxed.  相似文献   

15.
陆展鹏  魏兴波  刘天帅  陈阿海  高先龙 《物理学报》2017,66(12):126701-126701
通过数值方法求解了有限温度下一维均匀Hubbard模型的热力学Bethe-ansatz方程组,得到了在给定温度和相互作用强度情况下,比热c、磁化率χ和压缩比κ随化学势μ的变化图像.基于有限温度下一维均匀Hubbard模型的精确解,利用化学势(μ)-泛函理论研究了一维谐振势下的非均匀Hubbard模型,给出了金属态和Mott绝缘态下不同温度情况时局域粒子密度n_i和局域压缩比_κi随格点的变化情况.  相似文献   

16.
Conserved charge fluctuations can be used to probe the phase structure of strongly interacting nuclear matter in relativistic heavy-ion collisions. To obtain the characteristic signatures of the conserved charge fluctuations for the quantum chromodynamics(QCD) phase transition, we study the susceptibilities of dense quark matter up to eighth order in detail, using an effective QCD-based model. We studied two cases, one with the QCD critical end point(CEP) and one without owing to an additional vector interaction term. The higher order susceptibilities display rich structures near the CEP and show sign changes as well as large fluctuations. These can provide us information about the presence and location of the CEP. Furthermore, we find that the case without the CEP also shows a similar sign change pattern, but with a relatively smaller magnitude compared with the case with the CEP. Finally, we conclude that higher order susceptibilities of conserved charge can be used to probe the QCD phase structures in heavyion collisions.  相似文献   

17.
We study the sweep through the quantum phase transition from the superfluid to the Mott state for the Bose-Hubbard model with a time-dependent tunneling rate J(t). In the experimentally relevant case of exponential decay J(t) proportional variant e -gamma t, an adapted mean-field expansion for large fillings n yields a scaling solution for the fluctuations. This enables us to analytically calculate the evolution of the number and phase variations (on-site) and correlations (off-site) for slow (gammamu) sweeps, where mu is the chemical potential. Finally, we derive the dynamical decay of the off-diagonal long-range order as well as the temporal shrinkage of the superfluid fraction in a persistent ring-current setup.  相似文献   

18.
19.
We analyze the ground state properties of a one-dimensional cold atomic system in a lattice, where Rydberg excitations are created by an external laser drive. In the classical limit, the ground state is characterized by a complete devil's staircase for the commensurate solid structures of Rydberg excitations. Using perturbation theory and a mapping onto an effective low-energy Hamiltonian, we find a transition of these commensurate solids into a floating solid with algebraic correlations. For stronger quantum fluctuations the floating solid eventually melts within a second quantum phase transition and the ground state becomes paramagnetic.  相似文献   

20.
We analyze the effects of a random magnetic potential in a microfabricated waveguide for ultracold atoms. We find that the shape and position fluctuations of a current carrying wire induce a strong Gaussian correlated random potential with a length scale set by the atom-wire separation. The theory is used to explain quantitatively the observed fragmentation of the Bose-Einstein condensates in atomic waveguides. Furthermore, we show that nonlinear dynamics can be used to provide important insights into the nature of the strongly fragmented condensates. We argue that a quantum phase transition from the superfluid to the insulating Bose glass phase may be reached and detected under the realistic experimental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号