首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments were performed in a wind tunnel to study the flow around an axisymmetric body driven by a marine propeller. Measurements were made in the boundary layer and wake of the bare body, on the body with only a dummy hub rotating, and finally, with the propeller in operation. Part 1 of this paper described the experimental arrangement and instrumentation. Also, circumferentially-averaged results were presented to clarify certain aspects of the overall flow. In the present part, measurements made with a triplesensor hotwire are analyzed using phase-averaging techniques to reconstruct the instantaneous velocity and Reynolds-stress fields downstream of the propeller and show the evolution of the wakes of individual blades, blade-tip vortices, and the complex flow associated with vortices generated at hub-blade junctions. It is found that the blade wakes and features of the tip and hub flow are evident up to about two propeller diameters, beyond which the wake of the body-propeller combination can be regarded as a rotationally-symmetric flow.  相似文献   

2.
Boundary layer flow due to rotational oscillations of an axisymmetric body in the presence of a constant magnetic field is analysed by a process of successive approximations. The induced steady flow is confined only to the meridian place. The effect of the magnetic field is to decrease this steady flow.  相似文献   

3.
Using a specially adapted experimental technique, associated with a visualization method based upon solid tracers, we have obtained the flow pattern induced by the very slow uniform translation of an axisymmetric body along the axis of a vertical tube filled with a viscous liquid, both in a fixed frame (the frame is attached to the tube) and in a “relative” frame (the frame accompanies the body in its translation). The body, whose shape evolves from a sphere to a cylinder frustum, is free from any attachment or interaction with any other body; only the tube wall interaction is relevant. In these conditions, the upstream-downstream symmetry, relative to the creeping regime hypotheses, has been very well verified and quantitative information concerning, in particular, the velocity field has been deduced with sufficient precision (better than 2%) to exercise the control of a numerical process capable of giving all the details of the hydrodynamic field including those not directly available from the experiments. By comparison with the unbounded flows around the same bodies, the strong increase of the shape effect by the presence of the confining tube wall has been pointed out and evaluated, on the drag as well as on the surface vorticity and pressure distributions.  相似文献   

4.
The flowfield over a blunt-nosed cylinder was examined experimentally at a low subsonic speed for Re=1.88×105 and angles of attack up to 40°. Velocity measurements were carried out (employing a seven-hole Pitot tube) as well as wall static pressure and wall shear-stress measurements. Surface flow visualization was applied using liquid crystals and a mixture of oil–TiO2. For all the examined cases no flow asymmetries were found. For high angles of attack (20° and above) a separation “bubble” appears at the leeside of the nose area (streamwise flow separation). The basic feature of the circumferential pressure distribution at the after body area for these angles of attack is a plateau close to the suction peak and a fast recovery next to it. One streamwise vortex on each side of the symmetry plane is formed as well as a separation bubble about 90° far from this plane, where the cross-flow primary separation line is located. Each cross-flow primary separation line starts at the leeside nose area and moves towards the windward side along the cylindrical after body. The space between the two primary separation lines close to the wall is characterized by high flow fluctuations on the leeside, compared to the low fluctuations of the windward side.  相似文献   

5.
The problem of axisymmetric supersonic flow around a large body is solved in the case when the body is moving at constant velocity in an exponential atmosphere. The nonsteady conditions in the incoming flow are characterized by the Strouhal number. From numerical solutions for different Strouhal numbers, the deviation of the flow from quasisteady conditions is investigated.Translated from Izvestiya Akdemii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 158–161, May–June, 1978.It remains to thnak G. I. Petrov for supervising the work and for discussing the results.  相似文献   

6.
7.
8.
9.
Quasi-periodical evolutions such as shedding and collapsing of unsteady cloud cavitating flow, induce strong pressure fluctuations, what may deteriorate maneuvering stability and corrode surfaces of underwater vehicles. This paper analyzed effects on cavitation stability of a trip bar arranged on high-speed underwater projectile. Small scale water tank experiment and large eddy simulation using the open source software Open FOAM were used, and the results agree well with each other. Results also indicate that trip bar can obstruct downstream re-entrant jet and pressure wave propagation caused by collapse, resulting in a relatively stable sheet cavity between trip bar and shoulder of projectiles.  相似文献   

10.
The problem of an isolated free-running propeller–rudder combination is tackled in the present paper. The activity concerns phase-averaged velocity measurements by LDV along two transversal planes of the wake, just in the front and behind the rudder. In addition, visualizations of the chordwise interaction between the tip vortex filaments and the rudder, performed using a time resolved CMOS camera, are presented. The major phenomena that affect the performance of a rudder in the race of a propeller, with special emphasis on unsteady-flow aspects, are highlighted in this paper.  相似文献   

11.
12.
13.
The present work is concerned with the numerical calculation of the turbulent flow field around the stern of ship models. The finite volume approximation is employed to solve the Reynolds equations in the physical domain using a body-fitted, locally orthogonal curvilinear co-ordinate system. The Reynolds stresses are modelled according to the standard k-ε turbulence model. Various numerical schemes (i.e. hybrid, skew upwind and central differencing) are examined and grid dependence tests have been performed to compare calculated with experimental results. Moreover, a direct solution of the momentum equations within the near-wall region is tried to avoid the disadvantages of the wall function approach. Comparisons between calculations and measurements are made for two ship models, i.e. the SSPA and HSVA model.  相似文献   

14.
Based on Babenko’s fundamental mathematical ideas, principally new (unsaturated) algorithms are developed for the numerical solution of problems of a potential axisymmetric ideal fluid flow around bodies of revolution, in particular, an ellipsoid of revolution with an aspect ratio equal to 1000. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 56–67, September–October, 2006.  相似文献   

15.
16.
In this paper, we address the influence of a blowing-/suction-type distributed forcing on the flow past a blunt-based axisymmetric bluff body by means of direct numerical simulations. The forcing is applied via consecutive blowing and suction slots azimuthally distributed along the trailing edge of the bluff body. We examine the impact of the forcing wavelength, amplitude and waveform on the drag experienced by the bluff body and on the occurrence of the reflectional symmetry preserving and reflectional symmetry breaking wake modes, for Reynolds numbers 800 and 1,000. We show that forcing the flow at wavelengths inherent to the unforced flow drastically damps drag oscillations associated with the vortex shedding and vorticity bursts, up to their complete suppression. The overall parameter analysis suggests that this damping results from the surplus of streamwise vorticity provided by the forcing that tends to stabilize the ternary vorticity lobes observed at the aft part of the bluff body. In addition, conversely to a blowing-type or suction-type forcing, the blowing-/suction-type forcing involves strong nonlinear interactions between locally decelerated and accelerated regions, severely affecting both the mean drag and the frequencies representative of the vortex shedding and vorticity bursts.  相似文献   

17.
The present paper reports a numerical simulation of the supersonic/hypersonic unsteady flow over a spiked blunt body. Axisymmetric compressible Navier-Stokes equations are solved using a high-resolution unfactored implicit upwind Roe's scheme and a time-accurate pseudo-time method is employed for advancing in time. Unsteady flows arising at Mach 2.21 and Mach 6.00 around a spiked cylinder are simulated and the computational results are compared with measurements. The simulated results are used to increase understanding of the mechanisms of the flow. Received 28 September 1999 / Accepted 26 July 2000  相似文献   

18.
The flow characteristics of the propeller wake behind a container ship model with a rotating propeller were investigated using a two-frame PIV (Particle Image Velocimetry) technique. Ensemble-averaged mean velocity fields were measured at four different blade phases and ensemble-averaged to investigate the flow structure in the near-wake region. The mean velocity fields in longitudinal planes show that a velocity deficit is formed in the regions near the blade tips and hub. As the flow develops in the downstream direction, the trailing vortices formed behind the propeller hub move upward slightly due to the presence of the hull wake and free surface. Interaction between the bilge vortices and the incoming flow around the hull causes the flow structure to be asymmetric. Contour plots of the vorticity give information on the radial distribution of the loading on the blades. The radial velocity profiles fluctuate to a greater extent under the heavy (J=0.59) and light loading (J=0.88) conditions than under the design loading condition (J=0.72). The turbulence intensity has large values around the tip and trailing vortices. As the wake develops in the downstream direction, the strength of the vorticity diminishes and the turbulence intensity increases due to turbulent diffusion and active mixing between the tip vortices and the adjacent wake flow.  相似文献   

19.
This paper presents a PIV (particle image velocimetry) image processing method for measuring flow velocities around an arbitrarily moving body. This image processing technique uses a contour-texture analysis based on user-defined textons to determine the arbitrarily moving interface in the particle images. After the interface tracking procedure is performed, the particle images near the interface are transformed into Cartesian coordinates that are related to the distance from the interface. This transformed image always has a straight interface, so the interrogation windows can easily be arranged at certain distances from the interface. Accurate measurements near the interface can then be achieved by applying the window deformation algorithm in concert with PIV/IG (interface gradiometry). The displacement of each window is evaluated by using the window deformation algorithm and was found to result in acceptable errors except for the border windows. Quantitative evaluations of this method were performed by applying it to computer-generated images and actual PIV measurements.  相似文献   

20.
The problem of the axisymmetric flow around a body in a circular tube with arbitrary shape of the meridian section is reduced to the numerical solution of a system of two integral equations to determine the shape of the cavern and the intensity of the vortex rings arranged on the solid boundaries and the cavern boundary. Results of computations of the cavitation flow around a sphere, ellipsoid of revolution, and cone in a cylindrical tube, and also for a cone in converging and expanding tubes and in a hydrodynamic tunnel with the actual shape of the converging and working sections, are presented.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 50–55, July–August, 1976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号