首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X射线光栅相位成像的理论和方法   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对X射线光栅相位衬度成像实验装置的理论分析,提出了光栅位移曲线的表达式,推导出了X射线光栅相位衬度成像方程.根据该成像方程,提出了基于光栅成像相位提取方法.这些理论结果将简化光栅相位衬度成像实验步骤,提高信息获取效率,并为X射线光栅相位衬度成像和计算机断层成像的结合,进一步提出光栅相位衬度CT的简化理论奠定基础. 关键词: X射线 相位衬度成像 光栅衍射 Talbot效应  相似文献   

2.
The application of a two dimensional (2D) grating interferometer-Fresnel zone plate combination for quantitative submicron phase contrast imaging is reported. The combination of the two optical elements allows quick recovery of the phase shift introduced by a sample in a hard X-ray beam, avoiding artifacts observed when using the one dimensional (1D) interferometer for a sample with features oriented in the unsensitive direction of the interferometer. The setup provides submicron resolution due to the optics magnification ratio and a fine sensitivity in both transverse orientations due to the 2D analysis gratings. The method opens up possibilities for sub-micro phase contrast tomography of microscopic objects made of light and/or homogeneous materials with randomly oriented features.  相似文献   

3.
Bhaduri B  Popescu G 《Optics letters》2012,37(11):1868-1870
We present a method for phase retrieval in off-axis interferometric systems. By numerically calculating the transverse 1st and 2nd order derivatives of the interferogram, we show that one can directly retrieve the quantitative phase image, without the need for Fourier or Hilbert transformations. Because of this, the method is significantly faster than the current approaches. We illustrate our method using biological specimen data from three different off-axis quantitative phase imaging techniques.  相似文献   

4.
Robles FE  Satterwhite LL  Wax A 《Optics letters》2011,36(23):4665-4667
Nonlinear phase dispersion spectroscopy is introduced as a means to retrieve wideband, high spectral resolution profiles of the wavelength-dependent real part of the refractive index. The method is based on detecting dispersion effects imparted to a light field with low coherence transmitted through a thin sample and detected interferometrically in the spectral domain. The same sampled signal is also processed to yield quantitative phase maps and spectral information regarding the total attenuation coefficient using spectral-domain phase microscopy and spectroscopic optical coherence tomography (SOCT), respectively. Proof-of-concept experiments using fluorescent and nonfluorescent polystyrene beads and another using a red blood cell demonstrate the ability of the method to quantify various absorptive/dispersive features. The increased sensitivity of this method, novel to our knowledge, is compared to intensity-based spectroscopy (e.g., SOCT), and potential applications are discussed.  相似文献   

5.
Jiecheng Yang 《中国物理 B》2022,31(9):98702-098702
A general theoretical framework is presented to explain the formation of the phase signal in an x-ray microscope integrated with a grating interferometer, which simultaneously enables the high spatial resolution imaging and the improved image contrast. By using this theory, several key parameters of phase contrast imaging can be predicted, for instance, the fringe visibility and period, and the conversion condition from the differential phase imaging (DPI) to the phase difference imaging (PDI). Additionally, numerical simulations are performed with certain x-ray optical components and imaging geometry. Comparison with the available experimental measurement [Appl. Phys. Lett. 113 063105 (2018)] demonstrates the accuracy of this developed quantitative analysis method of x-ray phase-sensitive microscope imaging.  相似文献   

6.
荣锋  谢艳娜  邰雪凤  耿磊 《物理学报》2017,66(1):18701-018701
X射线光栅相衬成像存在系统复杂、成像效率低、步进精度要求高、光栅加工难度大等问题.本文设计了一种双能阵列X射线源和双能分析光栅,并应用于X射线光栅相衬成像,提出了一种双能X射线光栅相衬成像系统,阐述了该成像系统的成像原理和相位信息提取方法.提出的成像系统不需要精密步进平台,精简了成像系统,避免了步进误差导致的成像质量降低问题;两次曝光就可以成像,提高了成像效率;双能阵列X射线源、双能分析光栅的应用避免了源光栅、分析光栅难以加工的问题.对提出的成像系统及其相位提取方法进行了仿真,仿真结果显示成像系统可以正常成像,提取到的检测样本的X射线相衬成像相位一阶导数分布与相关文献实验所得结果一致.  相似文献   

7.
X射线光栅微分相位衬度成像技术可以观察到常规吸收衬度成像难以分辨的弱吸收物质的精细结构信息,因而在医学、材料学等研究领域具有巨大的应用前景.但传统的X射线光栅微分相位衬度成像技术由于采用分析光栅作为空间滤波器,需要采用相位步进法扫描分析光栅来获得样品的多张投影图像才能够分离出样品的吸收、折射和散射信息,因此存在样品曝光时间长、辐射剂量高以及X射线光通量利用率低等问题,限制了其在各个学科领域的应用研究.为克服上述问题,本文提出一种基于免分析光栅相位衬度成像系统的一次曝光样品信息提取算法.该算法只需要利用一块相位光栅,进而采用高分辨探测器进行样品投影数据的一次采集即可提取样品的吸收、折射和散射信息.理论和模拟研究结果表明:与传统相位步进法相比,该算法具有样品信息提取精度高,且不受光栅的自成像周期需为探测器像素尺寸的整数倍条件的限制.此外,该算法还能够有效地减少对生物样品的辐射损伤,因此在生物医学成像等研究领域中具有广泛的应用前景.  相似文献   

8.
We propose a method to carry out quantitative phase contrast imaging using in-line digital holography. The phase shifting digital holography is implemented in a common-path in-line configuration with the help of diffraction from a phase grating displayed on a spatial light modulator. The phase shifted interferograms are recorded by shifting the grating within a selected area corresponding to the dc spot in the Fourier transform plane. The feasibility of method is verified by using a multimode fiber as phase object. The method addresses a number of challenges faced by existing methods and dispenses the need for special optics.  相似文献   

9.
卫晨希  吴朝  魏文彬  鲍园  骆荣辉  王磊  刘刚  田扬超 《中国物理 B》2017,26(10):108701-108701
X-ray grating interferometer has attracted widely attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the widely used phase stepping information extraction method reduces system stability and prolongs data acquisition time by several times compared with conventional x-ray absorptionbased imaging. The mechanical stepping can be avoided by using a staggered grating, but at the cost of low vertical spatial resolution. In this paper, employing a modified staggered grating and the angular signal radiography, we proposed a single-shot grating-based x-ray differential phase contrast imaging with decent vertical spatial resolution. The theoretical framework was deduced and proved by numerical experiments. Absorption, phase, and scattering computed tomography can be performed without phase stepping. Therefore, we believe this fast and highly stable imaging method with decent resolution would be widely applied in x-ray grating-based phase contrast imaging.  相似文献   

10.
We present a method for phase retrieval in propagation-based x-ray imaging, based on the contrast transfer and transport of intensity equation approaches. We show that the contrast transfer model does not coincide with the transport of intensity in the limit of small propagation distances, and we derive a new model that alleviates this problem. Using this model, we devise an algorithm to retrieve the phase from slowly varying samples that is valid beyond the limit of small distances. We show its utility by imaging in three dimensions a biological sample that causes both strong absorption and phase shift.  相似文献   

11.
We present a fiber-optic low-coherence imaging technique, termed spectral-domain differential interference contrast microscopy (SD-DIC), for quantitative DIC imaging of both reflective surfaces and transparent biological specimens. SD-DIC combines the common-path nature of a Nomarski DIC interferometer with the high sensitivity of spectral-domain low-coherence interferometry to obtain high-resolution, quantitative measurements of optical pathlength gradients from a single point on the sample. Full-field imaging can be achieved by scanning the sample. A reflected-light SD-DIC system was demonstrated using a USAF resolution target as the phase object. Live cardiomyocytes were also imaged, achieving a resolution of 36 pm for pathlength gradient measurements. The dynamics of cardiomyocyte contraction were recorded with high sensitivity at selected sites on the cells.  相似文献   

12.
A super-resolution imaging method using dynamic grating based on liquid-crystal spatial light modulator (SLM) is developed to improve the resolution of a digital holographic system. The one-dimensional amplitude cosine grating is loaded on the SLM, which is placed between the object and hologram plane in order to collect more high-frequency components towards CCD plane. The point spread function of the system is given to confirm the separation condition of reconstructed images for multiple diffraction orders. The simulation and experiments are carried out for a standard resolution test target as a sample, which confirms that the imaging resolution is improved from 55.7 μm to 31.3 μm compared with traditional lensless Fourier transform digital holography. The unique advantage of the proposed method is that the period of the grating can be programmably adjusted according to the separation condition.  相似文献   

13.
We propose a fluorescence surface imaging system that presents a power of resolution beyond that of the diffraction limit without resorting to saturation effects or probe scanning. This is achieved by depositing the sample on an optimized periodically nanostructured substrate in a standard total internal reflection fluorescence microscope. The grating generates a high-spatial-frequency light grid that can be moved throughout the sample by changing the incident angle. An appropriate reconstruction procedure permits one to recover the fluorescence amplitude from the images obtained for various incidences. Simulations of this imaging system show that the resolution is not limited by diffraction but by the period of the grating.  相似文献   

14.
Quantitative phase imaging by itself allows for direct surface imaging of the transparent homogeneous sample, but it is very difficult or impossible for the inhomogeneous sample by itself due to the surface morphology and subsurface information are coupled. We hereby propose a simple method which obtains quantitative phase data and the physical thickness of sample by dual-medium quantitative phase measurement (DMQ) to extract subsurface sample information without the need of any exogenous dyes and any scan process. By using simulation technology, the feasibility of this method is demonstrated with subsurface imaging of a two-sphere model and a simulated monocyte.  相似文献   

15.
In this paper, we describe a new method for achieving phase-difference amplification, which is quick and convenient, operates in real time, and requires no photographic steps. Magnification factors of 2, 4 or 6 are achieved easily in one step. Because the system operates in real time, phase stepping may be applied to extract the amplified phase distributions. Our method is a variation on longitudinally reversed shearing interferometry, using first- or higher-order diffraction from a grating (hologram) which is in fact the interferogram of the wavefront under test. The grating is derived from a standard two-beam interferometer which is phase-stepped, and displayed in real time on a spatial light modulator in the phase-difference amplification setup. It is illuminated by the two output beams from a Sagnac interferometer, similar to the set up used by (Barnes et al. Barnes TH, Eiju T, Matsuda K. Appl Opt 1986; 25:1864). for spectral resolution enhancement, and a phase-amplified fringe pattern is obtained by spatial filtering using a Fourier transform lens. We demonstrate operation of the phase amplifier and show amplified phase maps retrieved by phase-stepping. We believe this is the first time that real-time phase amplification without photographic steps and with phase stepping has been demonstrated.  相似文献   

16.
We present a new quantitative phase microscopy technique, confocal diffraction phase microscopy, which provides quantitative phase measurements from localized sites on a sample with high sensitivity. The technique combines common-path interferometry with confocal microscopy in a transmission geometry. The capability of the technique for static imaging is demonstrated by imaging polystyrene microspheres and live HT29 cells, while dynamic imaging is demonstrated by quantifying the nanometer scale fluctuations of red blood cell membranes.  相似文献   

17.
成像光谱仪一体化设计   总被引:1,自引:0,他引:1  
随着超光谱成像技术的发展,超光谱成像光谱仪的要求也随之提高,小型化、高光谱分辨率和高空间分辨率成为发展趋势,这就要求设计者在进行仪器设计的过程中不断完善和优化设计。提出了成像光谱仪一体化设计的方法,即不单纯地进行光谱仪分光系统的设计,而是将光谱仪分光系统置于整体结构中进行整体系统设计和优化,从而实现超光谱成像光谱仪的最佳设计结果,并以近年来应用较为广泛的凸面光栅成像光谱仪为例,较为详细地阐述了成像光谱仪一体化设计方法在系统研制过程中的应用,并通过对该凸面光栅成像光谱仪的测试验证了该方法的正确性。  相似文献   

18.
杨君  郭金川  雷耀虎  易明皓  陈力 《中国物理 B》2017,26(2):28701-028701
In theory, we find that the actual function of the analyzer grating in the Talbot–Lau interferometer is segmenting the self-images of the phase grating and choosing integral areas, which make sure that each period of self-images in one detector pixel contributes the same signal to the detector. Furthermore, in the case of the lack of an analyzer grating, the shifting curves are still existent in theory as long as the number of fringes is non-integral in a detector pixel, which is a sufficient condition for creating shifting curve. The sufficient condition is available for not only the Talbot–Lau interferometer and the inverse geometry of Talbot–Lau interferometer, but also the x-ray phase contrast imaging system based on geometrical optics. In practical applications, we propose a method to improve the performances of the existing systems by employing the sufficient condition. This method can shorten the system length, is applicable to large period gratings, and can use the detectors with large pixels and large field of view. In addition, the experimental arrangement can be simplified due to the lack of an analyzer grating. In order to improve detection sensitivity and resolution, we also give an optimal fringe period.We believe that the theory and method proposed here is a step forward for x-ray phase contrast imaging.  相似文献   

19.
We present for the first time a complete characterization of a micro-solenoid for high resolution MR imaging of mass- and volume-limited samples based on three-dimensional B(0), B(1) per unit current (B(1)(unit)) and SNR maps. The micro-solenoids are fabricated using a fully micro-electromechanical systems (MEMS) compatible process in conjunction with an automatic wire-bonder. We present 15 μm isotropic resolution 3D B(0) maps performed using the phase difference method. The resulting B(0) variation in the range of [-0.07 ppm to -0.157 ppm] around the coil center, compares favorably with the 0.5 ppm limit accepted for MR microscopy. 3D B(1)(unit) maps of 40 μm isotropic voxel size were acquired according to the extended multi flip angle (ExMFA) method. The results demonstrate that the characterized microcoil provides a high and uniform sensitivity distribution around its center (B(1)(unit) = 3.4 mT/A ± 3.86%) which is in agreement with the corresponding 1D theoretical data computed along the coil axis. The 3D SNR maps reveal a rather uniform signal distribution around the coil center with a mean value of 53.69 ± 19%, in good agreement with the analytical 1D data along coil axis in the axial slice. Finally, we prove the microcoil capabilities for MR microscopy by imaging Eremosphaera viridis cells with 18 μm isotropic resolution.  相似文献   

20.
We experimentally demonstrate a three-dimensional (3D) ghost imaging method based on period diffraction correlation imaging. Compared with conventional ghost imaging, our method can easily retrieve the images of different focal planes. Due to the correlation between the disturbed object beam and the reference beams which do not pass through any scattering, the clear images can be periodically obtained in the uncovered zones even through a scattering medium. The analysis of the 3D imaging resolution reveals that the proper resolution for actual demand can be achieved by designing our devices. The implementation of this experiment is quite simple and low-cost. It facilitates the practical applications of ghost imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号