首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
(Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.  相似文献   

2.
An understanding of the interaction between Zn(2)GeO(4) and the CO(2) molecule is vital for developing its role in the photocatalytic reduction of CO(2). In this study, we present the structure and energetics of CO(2) adsorbed onto the stoichiometric perfectly and the oxygen vacancy defect of Zn(2)GeO(4) (010) and (001) surfaces using density functional theory slab calculations. The major finding is that the surface structure of the Zn(2)GeO(4) is important for CO(2) adsorption and activation, i.e., the interaction of CO(2) with Zn(2)GeO(4) surfaces is structure-dependent. The ability of CO(2) adsorption on (001) is higher than that of CO(2) adsorption on (010). For the (010) surface, the active sites O(2c)···Ge(3c) and Ge(3c)-O(3c) interact with the CO(2) molecule leading to a bidentate carbonate species. The presence of Ge(3c)-O(2c)···Ge(3c) bonds on the (001) surface strengthens the interaction of CO(2) with the (001) surface, and results in a bridged carbonate-like species. Furthermore, a comparison of the calculated adsorption energies of CO(2) adsorption on perfect and defective Zn(2)GeO(4) (010) and (001) surfaces shows that CO(2) has the strongest adsorption near a surface oxygen vacancy site, with an adsorption energy -1.05 to -2.17 eV, stronger than adsorption of CO(2) on perfect Zn(2)GeO(4) surfaces (E(ads) = -0.91 to -1.12 eV) or adsorption of CO(2) on a surface oxygen defect site (E(ads) = -0.24 to -0.95 eV). Additionally, for the defective Zn(2)GeO(4) surfaces, the oxygen vacancies are the active sites. CO(2) that adsorbs directly at the Vo site can be dissociated into CO and O and the Vo defect can be healed by the oxygen atom released during the dissociation process. On further analysis of the dissociative adsorption mechanism of CO(2) on the surface oxygen defect site, we concluded that dissociative adsorption of CO(2) favors the stepwise dissociation mechanism and the dissociation process can be described as CO(2) + Vo → CO(2)(δ-)/Vo → CO(adsorbed) + O(surface). This result has an important implication for understanding the photoreduction of CO(2) by using Zn(2)GeO(4) nanoribbons.  相似文献   

3.
Single-crystalline hexagonal prism Zn(2)GeO(4) nanorods with different aspect ratios have been prepared via a solution phase route, which exhibits improved photocatalytic activities in overall water splitting and photoreduction of CO(2) due to the low crystal defects, high specific surface area and beneficial microstructure on the catalyst's surface.  相似文献   

4.
An Ag(2)ZnGeO(4) photocatalyst was fabricated by ion-exchange reaction between amorphous Zn(2)GeO(4) suspension and Ag(+) solutions. The Ostwald ripening effect induced the formation of hierarchical hollow spheres. Compared with the reference bulk Ag(2)ZnGeO(4), the hierarchical Ag(2)ZnGeO(4) hollow spheres showed enhanced photocatalytic activity.  相似文献   

5.
孙中新 《无机化学学报》2012,28(6):1229-1233
利用高温固相法合成了Zn2GeO4∶Mn2+以及Zn2GeO4∶Mn2+,Yb3+绿色发射长余辉发光材料,对样品进行了X射线衍射分析、荧光光谱分析、色坐标、热释发光以及发光寿命测量。分析结果表明,在1 050℃下烧结3 h的Zn2GeO4为单相产物,所得Zn2GeO4∶Mn2+发光材料具有良好的发光性能,在紫外灯激发下发出最强发射位于528 nm的宽带发射并具有优良的长余辉发光特性,其色坐标值分别为x=0.145,y=0.773。Yb3+共掺杂对其长余辉发光性能提高明显。余辉发光在暗场环境下肉眼可观察的持续时间超过2 h。通过热释光谱对陷阱进行了分析。对Yb3+共掺杂的长余辉发光增强机理进行了讨论。  相似文献   

6.
We have searched for new species of small oxygen-containing gas-phase dianions produced in a secondary ion mass spectrometer by Cs+ ion bombardment of solid samples with simultaneous exposure of their surfaces to O2 gas. The targets were a pure zinc metal foil, a copper-contaminated zinc-based coin, two silicon-germanium samples (Si(1-x)Ge(x)(with x= 6.5% or 27%)) and a piece of titanium metal. The novel dianions Zn3O(4)(2-), Zn4O(5)(2-), CuZn2O(4)(2-), Si2GeO(6)(2-), Ti2O(5)(2-) and Ti3O(7)(2-) have been observed at half-integer m/z values in the negative ion mass spectra. The heptamer dianions Zn3O(4)(2-) and Ti2O(5)(2-) have been unambiguously identified by their isotopic abundances. Their flight times through the mass spectrometer are approximately 20 micros and approximately 17 micros, respectively. The geometrical structures of the two heptamer dianions Ti2O(5)(2-), and Zn3O(4)(2-) are investigated using ab initio methods, and the identified isomers are compared to those of the novel Ge2O(5)(2-) and the known Si2O(5)(2-) and Be3O(4)(2-) dianions.  相似文献   

7.
Zn(2)GeO(4)-ethylenediamine (ZGO-EDA) hybrid nanoribbons have been synthesized on a large-scale and directly assembled to membranes, which exhibit an excellent recyclability, high selectivity, and good thermal stability for highly efficient removal of heavy metal ions, i.e., Pb(2+), Cd(2+), Co(2+), and Cu(2+), from contaminated water.  相似文献   

8.
A new phase [PtIn6](GeO4)2O, a filled variant of [PtIn6](GaO4)2, and the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) were prepared and characterized. Single-crystal structure refinements show that [PtIn6](GeO4)2O is isotypic with the mineral, sulfohalite Na6FCl(SO4)2, and crystallizes in the space group Fmm (Z = 4) with a = 1006.0(1) pm. The building units of [PtIn6](GeO4)2O are isolated [PtIn6]10+ octahedra and (GeO4)4- tetrahedra, and the isolated O2- ions occupy the centers of the In6 octahedra made up of six adjacent PtIn6 octahedra. The lattice parameter of the solid solution [PtIn6](GaO4)(2-x)(GeO4)xOx/2 (0 < or = x < or = 2) varies gradually from a = 1001.3(1) pm at x = 0 to a = 1006.0(1) pm at x = 2, and the color of the solid solution changes gradually from black (x = 0) to red (x = 1) to yellow (x = 2). The cause for the gradual color change was examined by performing density functional theory electronic structure calculations for the end members [PtIn6](GaO4)2 and [PtIn6](GeO4)2O. Our analysis indicates that an oxygen atom at the center of a In6 octahedron cuts the In 5p/In 5p bonding interactions between adjacent [PtIn6]10+ octahedra thereby raising the bottom of the conduction bands, and the resulting quantum dot effect is responsible for the color change.  相似文献   

9.
The novel microporous germanate (NH4)4[(GeO2)3(GeO1.5F3)2].0.67H2O was prepared from an aqueous solution containing germanium dioxide, pyridine, hydrofluoric acid, and 2,6-diaminopyridine as a template. The solution was kept at 165 degrees C in a Teflon-lined autoclave for 4 days. Large crystals were produced and studied by X-ray powder diffraction, FTIR, thermal analysis, and elemental analysis. The structure was determined by single-crystal X-ray diffraction. The crystal is orthorhombic, space group Pbcn, with a = 7.0065(4) A, b = 11.7976(6) A, c = 19.5200(14) A, and Z = 4. The structure is a layered framework built up from GeO4 tetrahedral and GeO3F3 octahedral units. The polyhedral units are connected in such a way that they form a zeolite-like porous structure with three- and nine-membered rings. Half of the ammonium ions are located inside the nine-membered rings. The other half are above and below the three-membered rings. The connectivity of the germanium polyhedral units is interrupted along the c axis by ammonium ions and water molecules inserted between the layers.  相似文献   

10.
Germanium dioxide in the presence of 5% KOH reacted with dimethyl carbonate (DMC) at 250 degrees C to give (MeO)(4)Ge. The reaction of GeO(2) and DMC is similar to that reported for SiO(2); however, the rate of reaction for germanium is much higher than that of the corresponding silicon reaction. In a side-by-side experiment using SiO(2) and GeO(2) where the surface area of the silicon dioxide was 2 orders of magnitude higher than that of the GeO(2), the base-catalyzed reaction with DMC was about an order of magnitude higher for the germanium dioxide. When GeO(2) and 5% KOH were reacted with DMC at 350 degrees C, two products formed: (MeO)(4)Ge (70%) and MeGe(OMe)(3) (30%). Confirmation of the identity of MeGe(OMe)(3) was by GCMS, (1)H and (13)C NMR, and comparison to an authentic sample made by reaction of MeGeCl(3) with NaOMe. Experiments to determine the mechanism of the direct formation of Ge-C from GeO(2) ruled out participation from CO, H(2), or carbon. The KOH-catalyzed reaction of other metal oxides was explored including B(2)O(3), Ga(2)O(3), TiO(2), Sb(2)O(3), SnO(2), and SnO. Boron reacted to give unknown volatile products. Antimony reacted to give a solid which analyzed as Sb(OMe)(3). SnO reacted with DMC to give a mixture that included (MeO)(4)Sn and possibly Me(3)Sn(OMe).  相似文献   

11.
Lignie A  Armand P  Papet P 《Inorganic chemistry》2011,50(19):9311-9317
Using the slow-cooling method in selected fluxes, we have grown spontaneously nucleated single-crystals of pure GeO(2) and SiO(2)-substituted GeO(2) materials with the α-quartz structure. These piezoelectric materials were obtained in millimeter size as well-faceted, visually colorless, and transparent crystals. Cubic-like or hexagonal prism-like morphology was identified depending on the chemical composition of the single-crystals and on the nature of the flux. Both the silicon substitution rate and the homogeneity of its distribution were estimated by Energy Dispersive X-ray spectroscopy. The cell parameters of the flux-grown GeO(2) and Ge(1-x)Si(x)O(2) (0.038 ≤ x ≤ 0.089) solid-solution were deduced from their X-ray powder diffraction pattern. As expected, the cell volumes decrease as the silicon content substitution increases. A room temperature Infrared spectroscopy study confirms the absence of hydroxyl groups in the as-grown crystals. Unlike what was observed for hydrothermally grown GeO(2) crystals, these flux-grown oxide materials did not present any phase transition before melting as pointed out by a Differential Scanning Calorimetry study. Neither a α-quartz/β-quartz transition as encountered in SiO(2) near 573 °C nor a α-quartz to rutile transformation were detected for these GeO(2) and Ge(1-x)Si(x)O(2) single-crystals.  相似文献   

12.
Journal of Solid State Electrochemistry - Single-walled carbon nanotube (SWCNT) wrapped GeO2/ZnWO4 nanocomposite was prepared by single-step solvothermal method. In this work, GeO2/ZnWO4...  相似文献   

13.
Kong F  Jiang HL  Hu T  Mao JG 《Inorganic chemistry》2008,47(22):10611-10617
Two novel alkali(I) borogermanates with noncentrosymmetric structures, namely, CsB 3GeO 7 and K 2B 2Ge 3O 10, have been synthesized by high-temperature solid-state reactions in a platinum crucible. The structure of CsB 3GeO 7 features a novel three-dimensional (3D) framework composed of cyclic B 3O 7 (5-) groups that are interconnected by Ge(IV) cations, whereas the structure of K 2B 2Ge 3O 10 is a new 3D network based on cap-shaped [Ge 3B 2O 14] (10-) clusters that are interconnected via Ge-O-B bridges. CsB 3GeO 7 exhibits a second-harmonic generation (SHG) response that is about 1.5 times that of KDP (KH 2PO 4), whereas the SHG signal of K 2B 2Ge 3O 10 is very weak. Both compounds are insulators and transparent in the range of 300-5000 nm. The electronic structure calculations for both compounds also have been performed.  相似文献   

14.
A new open-framework germanium oxide Ge(10)O(21)(OH).N(4)C(6)H(21) has been hydrothermally synthesized at 180 degrees C for 6 days by using the tris(2-aminoethyl)amine (tren) molecule as a structure-directing agent. This compound was characterized by means of single-crystal X-ray diffraction and FTIR. It crystallizes in the noncentric monoclinic system Cm (a = 14.0495(2) A, b = 12.8058(3) A, c = 9.2637(2) A, beta = 128.406(1) degrees, Z = 4). Its three-dimensional framework is built up from GeO(4) and GeO(3)(OH) tetrahedra connected by vertexes to GeO(5) trigonal bipyramids and GeO(6) octahedra. A pseudo-cubic building unit ("4-3" subunit) consists of four GeO(4) tetrahedra, two GeO(5) trigonal bipyramids, and one GeO(6) octahedron (Ge(7)). In the "4-3" block, the GeO(5) trigonal bipyramids share a common edge. This Ge(7) entity is linked to three tetrahedral units GeO(3)X (X = O, OH), and this forms an original decameric building unit Ge(10)O(21)(OH) which is new in the germanates crystal chemistry. It results in a relatively dense open framework composed of pear-shape cavities (7(8)6(2)5(2)4(4)3(2)) encapsulating the triprotonated tren molecule. The inorganic network contains small pores delimited by 7-ring channels running along [001].  相似文献   

15.
Germanophosphate (GeO2-P2O5) glasses were studied with neutron diffraction, phosphorus, and oxygen nuclear magnetic resonance, calorimetry, viscosity measurements, and first-principles calculations. These data sets were combined to propose a structural model of GeO2-P2O5 glasses, which includes tetrahedrally coordinated phosphorus, formation of octahedrally coordinated germanium as P2O5 content increases, an absence of trigonally coordinated oxygen, and hence an absence of rutile-like GeO2 domains. The structural model was then used to propose explanations for both the observed composition dependence of the glass transition temperature and the fragility of the GeO2-P2O5 liquids.  相似文献   

16.
A novel open-framework material [Cu(H(2)O)(2)(OH)](2)Ge(PO(4))(2), which was synthesized by a hydrothermal method, is built of GeO(6), CuO(6) octahedra and PO(4) tetrahedra, and possesses a network of interconnecting six- and eight-membered ring channels.  相似文献   

17.
Glasses with the composition of (99.5-chi)GeO2-chiWO(3)-0.5Bi2O3 (chi=3, 6, 9 mol%) and (99.5-psi)GeO2-psiBaO-0.5Bi2O3 (psi=3, 6, 9 mol%) were prepared. Their thermal, emission and absorption measurements were carried out. The near-infrared super broadband emission of the prepared samples peak around 1.3 microm was discovered. The results indicated, in GeO2-WO3-Bi2O3 glasses, increasing amount of WO3 brought about the broadening of FWHM, prolonging of lifetime and enhancing of thermal stabilities. While in GeO2-BaO-Bi2O3 glasses, concomitant with the increasing amount of BaO were the broadened FWHM as well as the prolonged lifetime. Red-shift tendency of absorption edges was discovered in both two groups of glasses indicating the Bi5+ ions might take responsibility for the broadband emission.  相似文献   

18.
The first organically templated 3D borogermanate with a novel zeolite-type topology, (C4N3H15)[(BO2)2(GeO2)4] FJ-17, has been solvothermally synthesized and characterized by IR spectroscopy, powder X-ray diffraction (PXRD), TGA, and single-crystal X-ray diffraction. The compound crystallized in the monoclinic space group P2(1)/c with a = 6.967(1) A, b = 10.500(1) A, c = 20.501(1) A, beta = 90.500(3) degrees , V = 1499.68(8) A3, and Z = 4. The framework topology of this compound is the previously unknown topology with the vertex symbols 3.4.3.9.3.8(2) (vertex 1), 3.8.3.4.6(2).9(2) (vertex 2), 3.8(2).4.6(2).6(2).8 (vertex 3), 4.8.4.8.8(3).12 (vertex 4), 4.8.4.8.8(2).12 (vertex 5), and 3.8.4.6(2).6.8(2) (vertex 6). The structure is constructed from Ge8O24 and B2O7 clusters. The Ge8O24 cluster contains eight GeO4 tetrahedra that share vertices; the B2O7 unit is composed of two BO4 tetrahedra sharing a vertex. The cyclic Ge8O24 clusters connect to each other through vertices to form a 2D layer with 8,12-nets. The adjacent layers are further linked by the dimeric B2O7 cluster units, resulting in a 3D framework with 12- and 8-ring channels along the a and b axes, respectively. In addition, there is a unique B2GeO9 3-ring in the structure.  相似文献   

19.
Oxide ion conductivity in La(2)GeO(5)-based oxide was investigated and it was found that La-deficient La(2)GeO(5) exhibits oxide ion conductivity over a wide range of oxygen partial pressure. The crystal structure of La(2)GeO(5) was estimated to be monoclinic with P2(1)/c space group. Conductivity increased with increasing the amount of La deficiency and the maximum value was attained at x = 0.39 in La(2 - x)GeO(5 - delta). The oxide ion transport number in La(2)GeO(5)-based oxide was estimated to be unity by the electromotive force measurement in H(2)-O(2) and N(2)-O(2) gas concentration cells. At a temperature higher than 1000 K, the oxide ion conductivity of La(1.61)GeO(5 - delta) was almost the same as that of La(0.9)Sr(0.1)Ga(0.8)Mg(0.2)O(3 - delta) or Ce(0.85)Gd(0.15)O(2 - delta), which are well-known fast oxide ion conductors. On the other hand, a change in the activation energy for oxide ion conductivity was observed at 973 K, and at intermediate temperature, the oxide ion conductivity of La(1.61)GeO(5 - delta) became much smaller than that of these well-known fast oxide ion conductors. The change in the activation energy of the oxide ion conductivity seems to be caused by a change in the local oxygen vacancy structure. However, doping a small amount of Sr for La in La(2)GeO(5) was effective to stabilize the high-temperature crystal structure to low temperature. Consequently, doping a small amount of Sr increases the oxide ion conductivity of La(2)GeO(5)-based oxide at low temperature.  相似文献   

20.
采用传统熔体冷却法制备了Li3-xAl2-xGex(PO4)3(x=1.1~1.9)体系玻璃,并通过热处理工艺获得了高电导率的微晶玻璃.通过XRD、TEM和交流阻抗等测试方法,研究了该系微晶玻璃的物相组成、微观形貌和锂离子电导率.结果表明:该系统微晶玻璃析出导电主晶相为LiGe2(PO4)3,杂质相为AlPO4和GeO2.当x=1.5时,由于导电主晶相LiGe2(PO4)3晶粒充分长大、分布均匀,所制备微晶玻璃的室温锂离子电导率最高(5.72×10-4 S·cm-1),可以满足全固态锂离子电池对电解质高室温电导率的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号